Recession cone

From HandWiki
Short description: Set of vectors in convex analysis

In mathematics, especially convex analysis, the recession cone of a set [math]\displaystyle{ A }[/math] is a cone containing all vectors such that [math]\displaystyle{ A }[/math] recedes in that direction. That is, the set extends outward in all the directions given by the recession cone.[1]

Mathematical definition

Given a nonempty set [math]\displaystyle{ A \subset X }[/math] for some vector space [math]\displaystyle{ X }[/math], then the recession cone [math]\displaystyle{ \operatorname{recc}(A) }[/math] is given by

[math]\displaystyle{ \operatorname{recc}(A) = \{y \in X: \forall x \in A, \forall \lambda \geq 0: x + \lambda y \in A\}. }[/math][2]

If [math]\displaystyle{ A }[/math] is additionally a convex set then the recession cone can equivalently be defined by

[math]\displaystyle{ \operatorname{recc}(A) = \{y \in X: \forall x \in A: x + y \in A\}. }[/math][3]

If [math]\displaystyle{ A }[/math] is a nonempty closed convex set then the recession cone can equivalently be defined as

[math]\displaystyle{ \operatorname{recc}(A) = \bigcap_{t \gt 0} t(A - a) }[/math] for any choice of [math]\displaystyle{ a \in A. }[/math][3]

Properties

  • If [math]\displaystyle{ A }[/math] is a nonempty set then [math]\displaystyle{ 0 \in \operatorname{recc}(A) }[/math].
  • If [math]\displaystyle{ A }[/math] is a nonempty convex set then [math]\displaystyle{ \operatorname{recc}(A) }[/math] is a convex cone.[3]
  • If [math]\displaystyle{ A }[/math] is a nonempty closed convex subset of a finite-dimensional Hausdorff space (e.g. [math]\displaystyle{ \mathbb{R}^d }[/math]), then [math]\displaystyle{ \operatorname{recc}(A) = \{0\} }[/math] if and only if [math]\displaystyle{ A }[/math] is bounded.[1][3]
  • If [math]\displaystyle{ A }[/math] is a nonempty set then [math]\displaystyle{ A + \operatorname{recc}(A) = A }[/math] where the sum denotes Minkowski addition.

Relation to asymptotic cone

The asymptotic cone for [math]\displaystyle{ C \subseteq X }[/math] is defined by

[math]\displaystyle{ C_{\infty} = \{x \in X: \exists (t_i)_{i \in I} \subset (0,\infty), \exists (x_i)_{i \in I} \subset C: t_i \to 0, t_i x_i \to x\}. }[/math][4][5]

By the definition it can easily be shown that [math]\displaystyle{ \operatorname{recc}(C) \subseteq C_\infty. }[/math][4]

In a finite-dimensional space, then it can be shown that [math]\displaystyle{ C_{\infty} = \operatorname{recc}(C) }[/math] if [math]\displaystyle{ C }[/math] is nonempty, closed and convex.[5] In infinite-dimensional spaces, then the relation between asymptotic cones and recession cones is more complicated, with properties for their equivalence summarized in.[6]

Sum of closed sets

  • Dieudonné's theorem: Let nonempty closed convex sets [math]\displaystyle{ A,B \subset X }[/math] a locally convex space, if either [math]\displaystyle{ A }[/math] or [math]\displaystyle{ B }[/math] is locally compact and [math]\displaystyle{ \operatorname{recc}(A) \cap \operatorname{recc}(B) }[/math] is a linear subspace, then [math]\displaystyle{ A - B }[/math] is closed.[7][3]
  • Let nonempty closed convex sets [math]\displaystyle{ A,B \subset \mathbb{R}^d }[/math] such that for any [math]\displaystyle{ y \in \operatorname{recc}(A) \backslash \{0\} }[/math] then [math]\displaystyle{ -y \not\in \operatorname{recc}(B) }[/math], then [math]\displaystyle{ A + B }[/math] is closed.[1][4]

See also

References

  1. 1.0 1.1 1.2 Rockafellar, R. Tyrrell (1997). Convex Analysis. Princeton, NJ: Princeton University Press. pp. 60–76. ISBN 978-0-691-01586-6. 
  2. Borwein, Jonathan; Lewis, Adrian (2006). Convex Analysis and Nonlinear Optimization: Theory and Examples (2 ed.). Springer. ISBN 978-0-387-29570-1. 
  3. 3.0 3.1 3.2 3.3 3.4 Zălinescu, Constantin (2002). Convex analysis in general vector spaces. River Edge, NJ: World Scientific Publishing Co., Inc.. pp. 6–7. ISBN 981-238-067-1. https://archive.org/details/convexanalysisge00zali_858. 
  4. 4.0 4.1 4.2 Kim C. Border. "Sums of sets, etc.". http://www.hss.caltech.edu/~kcb/Notes/AsymptoticCones.pdf. Retrieved March 7, 2012. 
  5. 5.0 5.1 Alfred Auslender; M. Teboulle (2003). Asymptotic cones and functions in optimization and variational inequalities. Springer. pp. 25–80. ISBN 978-0-387-95520-9. https://archive.org/details/asymptoticconesf00ausl. 
  6. Zălinescu, Constantin (1993). "Recession cones and asymptotically compact sets". Journal of Optimization Theory and Applications (Springer Netherlands) 77 (1): 209–220. doi:10.1007/bf00940787. ISSN 0022-3239. 
  7. J. Dieudonné (1966). "Sur la séparation des ensembles convexes". Math. Ann. 163: 1–3. doi:10.1007/BF02052480.