Regular skew apeirohedron

From HandWiki
Short description: Infinite regular skew polyhedron
The mucube is a regular skew apeirohedron.

In geometry, a regular skew apeirohedron is an infinite regular skew polyhedron, with either skew regular faces or skew regular vertex figures.

History

According to Coxeter, in 1926 John Flinders Petrie generalized the concept of regular skew polygons (nonplanar polygons) to finite regular skew polyhedra in 4-dimensions, and infinite regular skew apeirohedra in 3-dimensions (described here).

Coxeter identified 3 forms, with planar faces and skew vertex figures, two are complements of each other. They are all named with a modified Schläfli symbol {l,m|n}, where there are l-gonal faces, m faces around each vertex, with holes identified as n-gonal missing faces.

Coxeter offered a modified Schläfli symbol {l,m|n} for these figures, with {l,m} implying the vertex figure, m l-gons around a vertex, and n-gonal holes. Their vertex figures are skew polygons, zig-zagging between two planes.

The regular skew polyhedra, represented by {l,m|n}, follow this equation:

  • 2 sin(π/l) · sin(π/m) = cos(π/n)

Regular skew apeirohedra of Euclidean 3-space

The three Euclidean solutions in 3-space are {4,6|4}, {6,4|4}, and {6,6|3}. John Conway named them mucube, muoctahedron, and mutetrahedron respectively for multiple cube, octahedron, and tetrahedron.[1]

  1. Mucube: {4,6|4}: 6 squares about each vertex (related to cubic honeycomb, constructed by cubic cells, removing two opposite faces from each, and linking sets of six together around a faceless cube.)
  2. Muoctahedron: {6,4|4}: 4 hexagons about each vertex (related to bitruncated cubic honeycomb, constructed by truncated octahedron with their square faces removed and linking hole pairs of holes together.)
  3. Mutetrahedron: {6,6|3}: 6 hexagons about each vertex (related to quarter cubic honeycomb, constructed by truncated tetrahedron cells, removing triangle faces, and linking sets of four around a faceless tetrahedron.)

Coxeter gives these regular skew apeirohedra {2q,2r|p} with extended chiral symmetry [[(p,q,p,r)]+] which he says is isomorphic to his abstract group (2q,2r|2,p). The related honeycomb has the extended symmetry [[(p,q,p,r)]].[2]

Compact regular skew apeirohedra
Coxeter group
symmetry
Apeirohedron
{p,q|l}
Image Face
{p}
Hole
{l}
Vertex
figure
Related
honeycomb
CDel branch.pngCDel 4a4b.pngCDel nodes.png
[[4,3,4]]
[[4,3,4]+]
{4,6|4}
Mucube
Mucube external.png
animation
100px 100px 100px CDel branch.pngCDel 4a4b.pngCDel nodes 11.png
t0,3{4,3,4}
Runcinated cubic honeycomb.png
{6,4|4}
Muoctahedron
Muoctahedron external.png
animation
100px 100px CDel branch 11.pngCDel 4a4b.pngCDel nodes.png
2t{4,3,4}
Bitruncated cubic honeycomb.png
CDel branch.pngCDel 3ab.pngCDel branch.png
[[3[4]]]
[[3[4]]+]
{6,6|3}
Mutetrahedron
Mutetrahedron external.png
animation
100px 100px 100px CDel branch 11.pngCDel 3ab.pngCDel branch.png
q{4,3,4}
Quarter cubic honeycomb.png

Regular skew apeirohedra in hyperbolic 3-space

The compact skew apeirohedron {4,6 | 5}

In 1967, C. W. L. Garner identified 31 hyperbolic skew apeirohedra with regular skew polygon vertex figures, found in a similar search to the 3 above from Euclidean space.[3]

These represent 14 compact and 17 paracompact regular skew polyhedra in hyperbolic space, constructed from the symmetry of a subset of linear and cyclic Coxeter groups graphs of the form (p,q,p,r), These define regular skew polyhedra {2q,2r|p} and dual {2r,2q|p}. For the special case of linear graph groups r = 2, this represents the Coxeter group [p,q,p]. It generates regular skews {2q,4|p} and {4,2q|p}. All of these exist as a subset of faces of the convex uniform honeycombs in hyperbolic space.

The skew apeirohedron shares the same antiprism vertex figure with the honeycomb, but only the zig-zag edge faces of the vertex figure are realized, while the other faces make holes.

14 Compact regular skew apeirohedra
Coxeter
group
Apeirohedron
{p,q|l}
Face
{p}
Hole
{l}
Honeycomb Vertex
figure
Apeirohedron
{p,q|l}
Face
{p}
Hole
{l}
Honeycomb Vertex
figure
CDel label5.pngCDel branch.pngCDel 3ab.pngCDel nodes.png
[3,5,3]
{10,4|3} Regular polygon 10 annotated.svg 60px CDel label5.pngCDel branch 11.pngCDel 3ab.pngCDel nodes.png
2t{3,5,3}
60px {4,10|3} 60px 60px CDel label5.pngCDel branch.pngCDel 3ab.pngCDel nodes 11.png
t0,3{3,5,3}
Runcinated icosahedral honeycomb verf.png
CDel branch.pngCDel 5a5b.pngCDel nodes.png
[5,3,5]
{6,4|5} Regular polygon 6 annotated.svg 60px CDel branch 11.pngCDel 5a5b.pngCDel nodes.png
2t{5,3,5}
60px {4,6|5} 60px 60px CDel branch.pngCDel 5a5b.pngCDel nodes 11.png
t0,3{5,3,5}
Runcinated order-5 dodecahedral honeycomb verf.png
CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.png
[(4,3,3,3)]
{8,6|3} Regular polygon 8 annotated.svg 60px CDel label4.pngCDel branch 11.pngCDel 3ab.pngCDel branch.png
ct{(4,3,3,3)}
60px {6,8|3} 60px 60px CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch 11.png
ct{(3,3,4,3)}
Uniform t23 4333 honeycomb verf.png
CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch.png
[(5,3,3,3)]
{10,6|3} Regular polygon 10 annotated.svg 60px CDel label5.pngCDel branch 11.pngCDel 3ab.pngCDel branch.png
ct{(5,3,3,3)}
60px {6,10|3} 60px 60px CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch 11.png
ct{(3,3,5,3)}
Uniform t23 5333 honeycomb verf.png
CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png
[(4,3,4,3)]
{8,8|3} Regular polygon 8 annotated.svg 60px CDel label4.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label4.png
ct{(4,3,4,3)}
60px {6,6|4} 60px 60px CDel label4.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
ct{(3,4,3,4)}
Uniform t12 4343 honeycomb verf.png
CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png
[(5,3,4,3)]
{8,10|3} Regular polygon 8 annotated.svg 60px CDel label4.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label5.png
ct{(4,3,5,3)}
60px {10,8|3} 60px 60px CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch 11.pngCDel label5.png
ct{(5,3,4,3)}
Uniform t12 5343 honeycomb verf.png
CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png
[(5,3,5,3)]
{10,10|3} Regular polygon 10 annotated.svg 60px CDel label5.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label5.png
ct{(5,3,5,3)}
60px {6,6|5} 60px 60px CDel label5.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png
ct{(3,5,3,5)}
Uniform t12 5353 honeycomb verf.png
17 Paracompact regular skew apeirohedra
Coxeter
group
Apeirohedron
{p,q|l}
Face
{p}
Hole
{l}
Honeycomb Vertex
figure
Apeirohedron
{p,q|l}
Face
{p}
Hole
{l}
Honeycomb Vertex
figure
CDel label4.pngCDel branch.pngCDel 4a4b.pngCDel nodes.png
[4,4,4]
{8,4|4} Regular polygon 8 annotated.svg 60px CDel label4.pngCDel branch 11.pngCDel 4a4b.pngCDel nodes.png
2t{4,4,4}
60px {4,8|4} 60px 60px CDel label4.pngCDel branch.pngCDel 4a4b.pngCDel nodes 11.png
t0,3{4,4,4}
Runcinated order-4 square tiling honeycomb verf.png
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel nodes.png
[3,6,3]
{12,4|3} Regular polygon 12 annotated.svg 60px CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel nodes.png
2t{3,6,3}
60px {4,12|3} 60px 60px CDel label6.pngCDel branch.pngCDel 3ab.pngCDel nodes 11.png
t0,3{3,6,3}
Runcinated triangular tiling honeycomb verf.png
CDel branch.pngCDel 6a6b.pngCDel nodes.png
[6,3,6]
{6,4|6} 60px 60px CDel branch 11.pngCDel 6a6b.pngCDel nodes.png
2t{6,3,6}
60px {4,6|6} 60px 60px CDel branch.pngCDel 6a6b.pngCDel nodes 11.png
t0,3{6,3,6}
Runcinated order-6 hexagonal tiling honeycomb verf.png
CDel label4.pngCDel branch.pngCDel 4a4b.pngCDel branch.png
[(4,4,4,3)]
{8,6|4} Regular polygon 8 annotated.svg 60px CDel label4.pngCDel branch 11.pngCDel 4a4b.pngCDel branch.png
ct{(4,4,3,4)}
60px {6,8|4} 60px 60px CDel label4.pngCDel branch.pngCDel 4a4b.pngCDel branch 11.png
ct{(3,4,4,4)}
Uniform t12 4443 honeycomb verf.png
CDel label4.pngCDel branch.pngCDel 4a4b.pngCDel branch.pngCDel label4.png
[(4,4,4,4)]
{8,8|4} Regular polygon 8 annotated.svg 60px CDel label4.pngCDel branch 11.pngCDel 4a4b.pngCDel branch.pngCDel label4.png
q{4,4,4}
Paracompact honeycomb 4444 1100 verf.png
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel 2.png
[(6,3,3,3)]
{12,6|3} Regular polygon 12 annotated.svg 60px CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.png
ct{(6,3,3,3)}
60px {6,12|3} 60px 60px CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 11.png
ct{(3,3,6,3)}
Uniform t12 6333 honeycomb verf.png
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png
[(6,3,4,3)]
{12,8|3} Regular polygon 12 annotated.svg 60px CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label4.png
ct{(6,3,4,3)}
60px {8,12|3} 60px 60px CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png
ct{(4,3,6,3)}
Uniform t12 6333 honeycomb verf.png
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png
[(6,3,5,3)]
{12,10|3} Regular polygon 12 annotated.svg 60px CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label5.png
ct{(6,3,5,3)}
60px {10,12|3} 60px 60px CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 11.pngCDel label5.png
ct{(5,3,6,3)}
Uniform t12 6353 honeycomb verf.png
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label6.png
[(6,3,6,3)]
{12,12|3} Regular polygon 12 annotated.svg 60px CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label6.png
ct{(6,3,6,3)}
60px {6,6|6} 60px 60px CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label6.png
ct{(3,6,3,6)}
Uniform t12 6363 honeycomb verf.png

See also

References

  1. The Symmetry of Things, 2008, Chapter 23 Objects with Primary Symmetry, Infinite Platonic Polyhedra, pp. 333–335
  2. Coxeter, Regular and Semi-Regular Polytopes II 2.34)
  3. Garner, C. W. L. Regular Skew Polyhedra in Hyperbolic Three-Space. Can. J. Math. 19, 1179–1186, 1967. [1] Note: His paper says there are 32, but one is self-dual, leaving 31.
  • Petrie–Coxeter Maps Revisited PDF, Isabel Hubard, Egon Schulte, Asia Ivic Weiss, 2005
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5,
  • Peter McMullen, Four-Dimensional Regular Polyhedra, Discrete & Computational Geometry September 2007, Volume 38, Issue 2, pp 355–387
  • Coxeter, Regular Polytopes, Third edition, (1973), Dover edition, ISBN 0-486-61480-8
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [2]
    • (Paper 2) H.S.M. Coxeter, "The Regular Sponges, or Skew Polyhedra", Scripta Mathematica 6 (1939) 240–244.
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, ISBN 0-486-40919-8 (Chapter 5: Regular Skew Polyhedra in three and four dimensions and their topological analogues, Proceedings of the London Mathematics Society, Ser. 2, Vol 43, 1937.)
    • Coxeter, H. S. M. Regular Skew Polyhedra in Three and Four Dimensions. Proc. London Math. Soc. 43, 33–62, 1937.