Ridge function

From HandWiki

In mathematics, a ridge function is any function [math]\displaystyle{ f:\R^d\rightarrow\R }[/math] that can be written as the composition of a univariate function with an affine transformation, that is: [math]\displaystyle{ f(\boldsymbol{x}) = g(\boldsymbol{x}\cdot \boldsymbol{a}) }[/math] for some [math]\displaystyle{ g:\R\rightarrow\R }[/math] and [math]\displaystyle{ \boldsymbol{a}\in\R^d }[/math]. Coinage of the term 'ridge function' is often attributed to B.F. Logan and L.A. Shepp.[1]

Relevance

A ridge function is not susceptible to the curse of dimensionality[clarification needed], making it an instrumental tool in various estimation problems. This is a direct result of the fact that ridge functions are constant in [math]\displaystyle{ d-1 }[/math] directions: Let [math]\displaystyle{ a_1,\dots,a_{d-1} }[/math] be [math]\displaystyle{ d-1 }[/math] independent vectors that are orthogonal to [math]\displaystyle{ a }[/math], such that these vectors span [math]\displaystyle{ d-1 }[/math] dimensions. Then

[math]\displaystyle{ f\left(\boldsymbol{x} + \sum_{k=1}^{d-1}c_k\boldsymbol{a}_k\right)=g\left(\boldsymbol{x}\cdot\boldsymbol{a} + \sum_{k=1}^{d-1} c_k\boldsymbol{a}_k\cdot\boldsymbol{a}\right)=g\left(\boldsymbol{x}\cdot\boldsymbol{a} + \sum_{k=1}^{d-1} c_k0\right) = g(\boldsymbol{x} \cdot \boldsymbol{a})=f(\boldsymbol{x}) }[/math]

for all [math]\displaystyle{ c_i\in\R,1\le i\lt d }[/math]. In other words, any shift of [math]\displaystyle{ \boldsymbol{x} }[/math] in a direction perpendicular to [math]\displaystyle{ \boldsymbol{a} }[/math] does not change the value of [math]\displaystyle{ f }[/math].

Ridge functions play an essential role in amongst others projection pursuit, generalized linear models, and as activation functions in neural networks. For a survey on ridge functions, see.[2] For books on ridge functions, see.[3][4]

References

  1. Logan, B.F.; Shepp, L.A. (1975). "Optimal reconstruction of a function from its projections". Duke Mathematical Journal 42 (4): 645–659. doi:10.1215/S0012-7094-75-04256-8. 
  2. Konyagin, S.V.; Kuleshov, A.A.; Maiorov, V.E. (2018). "Some Problems in the Theory of Ridge Functions". Proc. Steklov Inst. Math. 301: 144–169. doi:10.1134/S0081543818040120. 
  3. Pinkus, Allan (August 2015). Ridge functions. Cambridge: Cambridge Tracts in Mathematics 205. Cambridge University Press. 215 pp.. ISBN 9781316408124. https://www.cambridge.org/core/books/ridge-functions/25F7FDD1F852BE0F5D29171078BA5647. 
  4. Ismailov, Vugar (December 2021). Ridge functions and applications in neural networks. Providence, RI: Mathematical Surveys and Monographs 263. American Mathematical Society. 186 pp.. ISBN 978-1-4704-6765-4. https://www.ams.org/books/surv/263/.