Scatter matrix

From HandWiki
Short description: Concept in probability theory
For the notion in quantum mechanics, see scattering matrix.

In multivariate statistics and probability theory, the scatter matrix is a statistic that is used to make estimates of the covariance matrix, for instance of the multivariate normal distribution.

Definition

Given n samples of m-dimensional data, represented as the m-by-n matrix, [math]\displaystyle{ X=[\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n] }[/math], the sample mean is

[math]\displaystyle{ \overline{\mathbf{x}} = \frac{1}{n}\sum_{j=1}^n \mathbf{x}_j }[/math]

where [math]\displaystyle{ \mathbf{x}_j }[/math] is the j-th column of [math]\displaystyle{ X }[/math].[1]

The scatter matrix is the m-by-m positive semi-definite matrix

[math]\displaystyle{ S = \sum_{j=1}^n (\mathbf{x}_j-\overline{\mathbf{x}})(\mathbf{x}_j-\overline{\mathbf{x}})^T = \sum_{j=1}^n (\mathbf{x}_j-\overline{\mathbf{x}})\otimes(\mathbf{x}_j-\overline{\mathbf{x}}) = \left( \sum_{j=1}^n \mathbf{x}_j \mathbf{x}_j^T \right) - n \overline{\mathbf{x}} \overline{\mathbf{x}}^T }[/math]

where [math]\displaystyle{ (\cdot)^T }[/math] denotes matrix transpose,[2] and multiplication is with regards to the outer product. The scatter matrix may be expressed more succinctly as

[math]\displaystyle{ S = X\,C_n\,X^T }[/math]

where [math]\displaystyle{ \,C_n }[/math] is the n-by-n centering matrix.

Application

The maximum likelihood estimate, given n samples, for the covariance matrix of a multivariate normal distribution can be expressed as the normalized scatter matrix

[math]\displaystyle{ C_{ML}=\frac{1}{n}S. }[/math][3]

When the columns of [math]\displaystyle{ X }[/math] are independently sampled from a multivariate normal distribution, then [math]\displaystyle{ S }[/math] has a Wishart distribution.

See also

References

  1. Raghavan (2018-08-16). "Scatter matrix, Covariance and Correlation Explained" (in en). https://medium.com/@raghavan99o/scatter-matrix-covariance-and-correlation-explained-14921741ca56. 
  2. Raghavan (2018-08-16). "Scatter matrix, Covariance and Correlation Explained" (in en). https://medium.com/@raghavan99o/scatter-matrix-covariance-and-correlation-explained-14921741ca56. 
  3. Liu, Zhedong (April 2019). Robust Estimation of Scatter Matrix, Random Matrix Theory and an Application to Spectrum Sensing (PDF) (Master of Science). King Abdullah University of Science and Technology.