Semiorthogonal decomposition
In mathematics, a semiorthogonal decomposition is a way to divide a triangulated category into simpler pieces. One way to produce a semiorthogonal decomposition is from an exceptional collection, a special sequence of objects in a triangulated category. For an algebraic variety X, it has been fruitful to study semiorthogonal decompositions of the bounded derived category of coherent sheaves, [math]\displaystyle{ \text{D}^{\text{b}}(X) }[/math].
Semiorthogonal decomposition
Alexei Bondal and Mikhail Kapranov (1989) defined a semiorthogonal decomposition of a triangulated category [math]\displaystyle{ \mathcal{T} }[/math] to be a sequence [math]\displaystyle{ \mathcal{A}_1,\ldots,\mathcal{A}_n }[/math] of strictly full triangulated subcategories such that:[1]
- for all [math]\displaystyle{ 1\leq i\lt j\leq n }[/math] and all objects [math]\displaystyle{ A_i\in\mathcal{A}_i }[/math] and [math]\displaystyle{ A_j\in\mathcal{A}_j }[/math], every morphism from [math]\displaystyle{ A_j }[/math] to [math]\displaystyle{ A_i }[/math] is zero. That is, there are "no morphisms from right to left".
- [math]\displaystyle{ \mathcal{T} }[/math] is generated by [math]\displaystyle{ \mathcal{A}_1,\ldots,\mathcal{A}_n }[/math]. That is, the smallest strictly full triangulated subcategory of [math]\displaystyle{ \mathcal{T} }[/math] containing [math]\displaystyle{ \mathcal{A}_1,\ldots,\mathcal{A}_n }[/math] is equal to [math]\displaystyle{ \mathcal{T} }[/math].
The notation [math]\displaystyle{ \mathcal{T}=\langle\mathcal{A}_1,\ldots,\mathcal{A}_n\rangle }[/math] is used for a semiorthogonal decomposition.
Having a semiorthogonal decomposition implies that every object of [math]\displaystyle{ \mathcal{T} }[/math] has a canonical "filtration" whose graded pieces are (successively) in the subcategories [math]\displaystyle{ \mathcal{A}_1,\ldots,\mathcal{A}_n }[/math]. That is, for each object T of [math]\displaystyle{ \mathcal{T} }[/math], there is a sequence
- [math]\displaystyle{ 0=T_n\to T_{n-1}\to\cdots\to T_0=T }[/math]
of morphisms in [math]\displaystyle{ \mathcal{T} }[/math] such that the cone of [math]\displaystyle{ T_i\to T_{i-1} }[/math] is in [math]\displaystyle{ \mathcal{A}_i }[/math], for each i. Moreover, this sequence is unique up to a unique isomorphism.[2]
One can also consider "orthogonal" decompositions of a triangulated category, by requiring that there are no morphisms from [math]\displaystyle{ \mathcal{A}_i }[/math] to [math]\displaystyle{ \mathcal{A}_j }[/math] for any [math]\displaystyle{ i\neq j }[/math]. However, that property is too strong for most purposes. For example, for an (irreducible) smooth projective variety X over a field, the bounded derived category [math]\displaystyle{ \text{D}^{\text{b}}(X) }[/math] of coherent sheaves never has a nontrivial orthogonal decomposition, whereas it may have a semiorthogonal decomposition, by the examples below.
A semiorthogonal decomposition of a triangulated category may be considered as analogous to a finite filtration of an abelian group. Alternatively, one may consider a semiorthogonal decomposition [math]\displaystyle{ \mathcal{T}=\langle\mathcal{A},\mathcal{B}\rangle }[/math] as closer to a split exact sequence, because the exact sequence [math]\displaystyle{ 0\to\mathcal{A}\to\mathcal{T}\to\mathcal{T}/\mathcal{A}\to 0 }[/math] of triangulated categories is split by the subcategory [math]\displaystyle{ \mathcal{B}\subset \mathcal{T} }[/math], mapping isomorphically to [math]\displaystyle{ \mathcal{T}/\mathcal{A} }[/math].
Using that observation, a semiorthogonal decomposition [math]\displaystyle{ \mathcal{T}=\langle\mathcal{A}_1,\ldots,\mathcal{A}_n\rangle }[/math] implies a direct sum splitting of Grothendieck groups:
- [math]\displaystyle{ K_0(\mathcal{T})\cong K_0(\mathcal{A}_1)\oplus\cdots\oplus K_0(\mathcal{A_n}). }[/math]
For example, when [math]\displaystyle{ \mathcal{T}=\text{D}^{\text{b}}(X) }[/math] is the bounded derived category of coherent sheaves on a smooth projective variety X, [math]\displaystyle{ K_0(\mathcal{T}) }[/math] can be identified with the Grothendieck group [math]\displaystyle{ K_0(X) }[/math] of algebraic vector bundles on X. In this geometric situation, using that [math]\displaystyle{ \text{D}^{\text{b}}(X) }[/math] comes from a dg-category, a semiorthogonal decomposition actually gives a splitting of all the algebraic K-groups of X:
- [math]\displaystyle{ K_i(X)\cong K_i(\mathcal{A}_1)\oplus\cdots\oplus K_i(\mathcal{A_n}) }[/math]
for all i.[3]
Admissible subcategory
One way to produce a semiorthogonal decomposition is from an admissible subcategory. By definition, a full triangulated subcategory [math]\displaystyle{ \mathcal{A}\subset\mathcal{T} }[/math] is left admissible if the inclusion functor [math]\displaystyle{ i\colon\mathcal{A}\to\mathcal{T} }[/math] has a left adjoint functor, written [math]\displaystyle{ i^* }[/math]. Likewise, [math]\displaystyle{ \mathcal{A}\subset\mathcal{T} }[/math] is right admissible if the inclusion has a right adjoint, written [math]\displaystyle{ i^! }[/math], and it is admissible if it is both left and right admissible.
A right admissible subcategory [math]\displaystyle{ \mathcal{B}\subset\mathcal{T} }[/math] determines a semiorthogonal decomposition
- [math]\displaystyle{ \mathcal{T}=\langle\mathcal{B}^{\perp},\mathcal{B}\rangle }[/math],
where
- [math]\displaystyle{ \mathcal{B}^{\perp}:=\{T\in\mathcal{T}: \operatorname{Hom}(\mathcal{B},T)=0\} }[/math]
is the right orthogonal of [math]\displaystyle{ \mathcal{B} }[/math] in [math]\displaystyle{ \mathcal{T} }[/math].[2] Conversely, every semiorthogonal decomposition [math]\displaystyle{ \mathcal{T}=\langle \mathcal{A},\mathcal{B}\rangle }[/math] arises in this way, in the sense that [math]\displaystyle{ \mathcal{B} }[/math] is right admissible and [math]\displaystyle{ \mathcal{A}=\mathcal{B}^{\perp} }[/math]. Likewise, for any semiorthogonal decomposition [math]\displaystyle{ \mathcal{T}=\langle \mathcal{A},\mathcal{B}\rangle }[/math], the subcategory [math]\displaystyle{ \mathcal{A} }[/math] is left admissible, and [math]\displaystyle{ \mathcal{B}={}^{\perp}\mathcal{A} }[/math], where
- [math]\displaystyle{ {}^{\perp}\mathcal{A}:=\{T\in\mathcal{T}: \operatorname{Hom}(T,\mathcal{A})=0\} }[/math]
is the left orthogonal of [math]\displaystyle{ \mathcal{A} }[/math].
If [math]\displaystyle{ \mathcal{T} }[/math] is the bounded derived category of a smooth projective variety over a field k, then every left or right admissible subcategory of [math]\displaystyle{ \mathcal{T} }[/math] is in fact admissible.[4] By results of Bondal and Michel Van den Bergh, this holds more generally for [math]\displaystyle{ \mathcal{T} }[/math] any regular proper triangulated category that is idempotent-complete.[5]
Moreover, for a regular proper idempotent-complete triangulated category [math]\displaystyle{ \mathcal{T} }[/math], a full triangulated subcategory is admissible if and only if it is regular and idempotent-complete. These properties are intrinsic to the subcategory.[6] For example, for X a smooth projective variety and Y a subvariety not equal to X, the subcategory of [math]\displaystyle{ \text{D}^{\text{b}}(X) }[/math] of objects supported on Y is not admissible.
Exceptional collection
Let k be a field, and let [math]\displaystyle{ \mathcal{T} }[/math] be a k-linear triangulated category. An object E of [math]\displaystyle{ \mathcal{T} }[/math] is called exceptional if Hom(E,E) = k and Hom(E,E[t]) = 0 for all nonzero integers t, where [t] is the shift functor in [math]\displaystyle{ \mathcal{T} }[/math]. (In the derived category of a smooth complex projective variety X, the first-order deformation space of an object E is [math]\displaystyle{ \operatorname{Ext}^1_X(E,E)\cong \operatorname{Hom}(E,E[1]) }[/math], and so an exceptional object is in particular rigid. It follows, for example, that there are at most countably many exceptional objects in [math]\displaystyle{ \text{D}^{\text{b}}(X) }[/math], up to isomorphism. That helps to explain the name.)
The triangulated subcategory generated by an exceptional object E is equivalent to the derived category [math]\displaystyle{ \text{D}^{\text{b}}(k) }[/math] of finite-dimensional k-vector spaces, the simplest triangulated category in this context. (For example, every object of that subcategory is isomorphic to a finite direct sum of shifts of E.)
Alexei Gorodentsev and Alexei Rudakov (1987) defined an exceptional collection to be a sequence of exceptional objects [math]\displaystyle{ E_1,\ldots,E_m }[/math] such that [math]\displaystyle{ \operatorname{Hom}(E_j,E_i[t])=0 }[/math] for all i < j and all integers t. (That is, there are "no morphisms from right to left".) In a proper triangulated category [math]\displaystyle{ \mathcal{T} }[/math] over k, such as the bounded derived category of coherent sheaves on a smooth projective variety, every exceptional collection generates an admissible subcategory, and so it determines a semiorthogonal decomposition:
- [math]\displaystyle{ \mathcal{T}=\langle\mathcal{A},E_1,\ldots,E_m\rangle, }[/math]
where [math]\displaystyle{ \mathcal{A}=\langle E_1,\ldots,E_m\rangle^{\perp} }[/math], and [math]\displaystyle{ E_i }[/math] denotes the full triangulated subcategory generated by the object [math]\displaystyle{ E_i }[/math].[7] An exceptional collection is called full if the subcategory [math]\displaystyle{ \mathcal{A} }[/math] is zero. (Thus a full exceptional collection breaks the whole triangulated category up into finitely many copies of [math]\displaystyle{ \text{D}^{\text{b}}(k) }[/math].)
In particular, if X is a smooth projective variety such that [math]\displaystyle{ \text{D}^{\text{b}}(X) }[/math] has a full exceptional collection [math]\displaystyle{ E_1,\ldots,E_m }[/math], then the Grothendieck group of algebraic vector bundles on X is the free abelian group on the classes of these objects:
- [math]\displaystyle{ K_0(X)\cong \Z\{E_1,\ldots,E_m\}. }[/math]
A smooth complex projective variety X with a full exceptional collection must have trivial Hodge theory, in the sense that [math]\displaystyle{ h^{p,q}(X)=0 }[/math] for all [math]\displaystyle{ p\neq q }[/math]; moreover, the cycle class map [math]\displaystyle{ CH^*(X)\otimes\Q\to H^*(X,\Q) }[/math] must be an isomorphism.[8]
Examples
The original example of a full exceptional collection was discovered by Alexander Beilinson (1978): the derived category of projective space over a field has the full exceptional collection
- [math]\displaystyle{ \text{D}^{\text{b}}(\mathbf{P}^n)=\langle O,O(1),\ldots,O(n)\rangle }[/math],
where O(j) for integers j are the line bundles on projective space.[9] Full exceptional collections have also been constructed on all smooth projective toric varieties, del Pezzo surfaces, many projective homogeneous varieties, and some other Fano varieties.[10]
More generally, if X is a smooth projective variety of positive dimension such that the coherent sheaf cohomology groups [math]\displaystyle{ H^i(X,O_X) }[/math] are zero for i > 0, then the object [math]\displaystyle{ O_X }[/math] in [math]\displaystyle{ \text{D}^{\text{b}}(X) }[/math] is exceptional, and so it induces a nontrivial semiorthogonal decomposition [math]\displaystyle{ \text{D}^{\text{b}}(X)=\langle (O_X)^{\perp},O_X\rangle }[/math]. This applies to every Fano variety over a field of characteristic zero, for example. It also applies to some other varieties, such as Enriques surfaces and some surfaces of general type.
A source of examples is Orlov's blowup formula concerning the blowup [math]\displaystyle{ X = \operatorname{Bl}_Z(Y) }[/math] of a scheme [math]\displaystyle{ Y }[/math] at a codimension [math]\displaystyle{ k }[/math] locally complete intersection subscheme [math]\displaystyle{ Z }[/math] with exceptional locus [math]\displaystyle{ \iota: E \simeq \mathbb{P}_Z(N_{Z/Y})\to X }[/math]. There is a semiorthogonal decomposition [math]\displaystyle{ D^b(X) = \langle \Phi_{1-k}(D^b(Z)), \ldots, \Phi_{-1}(D^b(Z)), \pi^*(D^b(Y))\rangle }[/math] where [math]\displaystyle{ \Phi_i:D^b(Z) \to D^b(X) }[/math] is the functor [math]\displaystyle{ \Phi_i(-) = \iota_*(\mathcal{O}_E(k))\otimes p^*(-)) }[/math] with [math]\displaystyle{ p : X \to Y }[/math]is the natural map.[11]
While these examples encompass a large number of well-studied derived categories, many naturally occurring triangulated categories are "indecomposable". In particular, for a smooth projective variety X whose canonical bundle [math]\displaystyle{ K_X }[/math] is basepoint-free, every semiorthogonal decomposition [math]\displaystyle{ \text{D}^{\text{b}}(X)=\langle\mathcal{A},\mathcal{B}\rangle }[/math] is trivial in the sense that [math]\displaystyle{ \mathcal{A} }[/math] or [math]\displaystyle{ \mathcal{B} }[/math] must be zero.[12] For example, this applies to every variety which is Calabi–Yau in the sense that its canonical bundle is trivial.
See also
Notes
- ↑ Huybrechts 2006, Definition 1.59.
- ↑ 2.0 2.1 Bondal & Kapranov 1990, Proposition 1.5.
- ↑ Orlov 2016, Section 1.2.
- ↑ Kuznetsov 2007, Lemmas 2.10, 2.11, and 2.12.
- ↑ Orlov 2016, Theorem 3.16.
- ↑ Orlov 2016, Propositions 3.17 and 3.20.
- ↑ Huybrechts 2006, Lemma 1.58.
- ↑ Marcolli & Tabuada 2015, Proposition 1.9.
- ↑ Huybrechts 2006, Corollary 8.29.
- ↑ Kuznetsov 2014, Section 2.2.
- ↑ Orlov, D O (1993-02-28). "PROJECTIVE BUNDLES, MONOIDAL TRANSFORMATIONS, AND DERIVED CATEGORIES OF COHERENT SHEAVES". Russian Academy of Sciences. Izvestiya Mathematics 41 (1): 133–141. doi:10.1070/im1993v041n01abeh002182. ISSN 1064-5632. http://dx.doi.org/10.1070/im1993v041n01abeh002182.
- ↑ Kuznetsov 2014, Section 2.5.
References
- "Representable functors, Serre functors, and reconstructions", Mathematics of the USSR-Izvestiya 35: 519–541, 1990, doi:10.1070/IM1990v035n03ABEH000716
- Huybrechts, Daniel (2006), Fourier–Mukai transforms in algebraic geometry, Oxford University Press, ISBN 978-0199296866
- "Homological projective duality", Publications Mathématiques de l'IHÉS 105: 157–220, 2007, doi:10.1007/s10240-007-0006-8
- "Semiorthogonal decompositions in algebraic geometry", Proceedings of the International Congress of Mathematicians (Seoul, 2014), 2, Seoul: Kyung Moon Sa, 2014, pp. 635–660
- "From exceptional collections to motivic decompositions via noncommutative motives", Journal für die reine und angewandte Mathematik 701: 153–167, 2015, doi:10.1515/crelle-2013-0027
- "Smooth and proper noncommutative schemes and gluing of DG categories", Advances in Mathematics 302: 59–105, 2016, doi:10.1016/j.aim.2016.07.014
Original source: https://en.wikipedia.org/wiki/Semiorthogonal decomposition.
Read more |