Shift graph

From HandWiki

In graph theory, the shift graph Gn,k for [math]\displaystyle{ n,k \in \mathbb{N},\ n \gt 2k \gt 0 }[/math] is the graph whose vertices correspond to the ordered [math]\displaystyle{ k }[/math]-tuples [math]\displaystyle{ a = (a_1, a_2, \dotsc, a_k) }[/math] with [math]\displaystyle{ 1 \leq a_1 \lt a_2 \lt \cdots \lt a_k \leq n }[/math] and where two vertices [math]\displaystyle{ a, b }[/math] are adjacent if and only if [math]\displaystyle{ a_i = b_{i+1} }[/math] or [math]\displaystyle{ a_{i+1} = b_i }[/math] for all [math]\displaystyle{ 1 \leq i \leq k-1 }[/math]. Shift graphs are triangle-free, and for fixed [math]\displaystyle{ k }[/math] their chromatic number tend to infinity with [math]\displaystyle{ n }[/math].[1] It is natural to enhance the shift graph [math]\displaystyle{ G_{n,k} }[/math] with the orientation [math]\displaystyle{ a \to b }[/math] if [math]\displaystyle{ a_{i+1}=b_i }[/math] for all [math]\displaystyle{ 1\leq i\leq k-1 }[/math]. Let [math]\displaystyle{ \overrightarrow{G}_{n,k} }[/math] be the resulting directed shift graph. Note that [math]\displaystyle{ \overrightarrow{G}_{n,2} }[/math] is the directed line graph of the transitive tournament corresponding to the identity permutation. Moreover, [math]\displaystyle{ \overrightarrow{G}_{n,k+1} }[/math] is the directed line graph of [math]\displaystyle{ \overrightarrow{G}_{n,k} }[/math] for all [math]\displaystyle{ k \geq 2 }[/math].

Further facts about shift graphs

  • Odd cycles of [math]\displaystyle{ G_{n,k} }[/math] have length at least [math]\displaystyle{ 2k+1 }[/math], in particular [math]\displaystyle{ G_{n,2} }[/math] is triangle free.
  • For fixed [math]\displaystyle{ k \geq 2 }[/math] the asymptotic behaviour of the chromatic number of [math]\displaystyle{ G_{n,k} }[/math] is given by [math]\displaystyle{ \chi(G_{n,k}) = (1 + o(1))\log\log\cdots\log n }[/math] where the logarithm function is iterated [math]\displaystyle{ {\displaystyle k-1} }[/math] times.[1]
  • Further connections to the chromatic theory of graphs and digraphs have been established in.[2]
  • Shift graphs, in particular [math]\displaystyle{ G_{n,3} }[/math] also play a central role in the context of order dimension of interval orders.[3]

Representation of shift graphs

The line representation of a shift graph.

The shift graph [math]\displaystyle{ G_{n,2} }[/math] is the line-graph of the complete graph [math]\displaystyle{ K_n }[/math] in the following way: Consider the numbers from [math]\displaystyle{ 1 }[/math] to [math]\displaystyle{ n }[/math] ordered on the line and draw line segments between every pair of numbers. Every line segment corresponds to the [math]\displaystyle{ 2 }[/math]-tuple of its first and last number which are exactly the vertices of [math]\displaystyle{ G_{n,2} }[/math]. Two such segments are connected if the starting point of one line segment is the end point of the other.

References

  1. 1.0 1.1 "On chromatic number of infinite graphs", Theory of Graphs (Proc. Colloq., Tihany, 1966), New York: Academic Press, 1968, pp. 83–98, http://www.renyi.hu/~p_erdos/1968-04.pdf 
  2. Simonyi, Gábor (2011). "On directed local chromatic number, shift graphs, and Borsuk-like graphs". Journal of Graph Theory 66: 65–82. doi:10.1002/jgt.20494. 
  3. "Interval Orders and Shift Graphs". Sets, Graphs and Numbers (Proc. Colloq. Math. Soc. Janos Bolyai) 60: 297–313. 1991.