Snub rhombicuboctahedron

From HandWiki
Snub rhombicuboctahedron
Snub rhombicuboctahedron.png
Schläfli symbol srr{4,3} = [math]\displaystyle{ sr\begin{Bmatrix} 4 \\ 3 \end{Bmatrix} }[/math]
Conway notation saC
Faces 74:
8+48 {3}
6+12 {4}
Edges 120
Vertices 48
Symmetry group O, [4,3]+, (432) order 24
Dual polyhedron Pentagonal tetracontoctahedron
Properties convex, chiral

The snub rhombicuboctahedron is a polyhedron, constructed as a truncated rhombicuboctahedron. It has 74 faces: 18 squares, and 56 triangles. It can also be called the Conway snub cuboctahedron in but will be confused with the Coxeter snub cuboctahedron, the snub cube.

Related polyhedra

The snub rhombicuboctahedron can be seen in sequence of operations from the cuboctahedron.

Name Cubocta-
hedron
Truncated
cubocta-
hedron
Snub
cubocta-
hedron
Truncated
rhombi-
cubocta-
hedron
Snub
rhombi-
cubocta-
hedron
Coxeter CO (rC) tCO (trC) sCO (srC) trCO (trrC) srCO (htrrC)
Conway aC taC = bC sC taaC = baC saC
Image Uniform polyhedron-43-t1.svg Uniform polyhedron-43-t012.png Uniform polyhedron-43-s012.png Truncated rhombicuboctahedron2.png Snub rhombicuboctahedron2.png
Conway jC mC gC maC gaC
Dual Rhombicdodecahedron.jpg Disdyakisdodecahedron.jpg Pentagonalicositetrahedronccw.jpg Disdyakis enneacontahexahedron.png Pentagonal tetracontoctahedron.png

See also

References

External links