Software:AliceVision Meshroom

From HandWiki
AliceVision Meshroom
AliceVision-logo.png
Stable release
2021.1 / February 26, 2021; 2 years ago (2021-02-26)
Repositorygithub.com/alicevision
Written inPython, QML, C++, CUDA
Operating systemLinux, Windows
TypeComputer Vision library
LicenseMPLv2 License
Websitealicevision.org

AliceVision is a Computer Vision and Photogrammetry framework for generating a textured 3D model from an unordered set of photos. The library provides algorithms for 3D reconstruction and match moving and is organized into modules for feature extraction, image matching, features matching, camera calibration and localisation, depth maps estimation, meshing and texturing.

The library is cross-platform and distributed as open source with the Mozilla Public License. It relies on open standard and file formats (OBJ, glTF, OpenEXR, Alembic) to facilitate interoperability with other software[1].

Meshroom

Example of Meshroom graphical user interface with a 3D model reconstructed from a set of unordered images.
The nodal-based graphical user interface of Meshroom showing the 3D reconstruction pipeline.

Meshroom is the graphical user interface built around AliceVision. The main feature is its nodal system which allows the 3D reconstruction process to be modeled as a pipeline of nodes. Each node corresponds to a step in the reconstruction process and the result of each node can be used as input to another node. This allows the process to be customized and adapted to different needs depending on the type of applications.[1] Each node can be run locally on the computer or remotely on multiple computers in parallel in a render farm.

Meshroom is used since 2014 mainly in digital environment creation for the Visual Effects industry[2][3] and in many other industries such as augmented reality for medical applications[4], conservation and digitization of cultural heritage[5][6], archaeology[7][8][9], biology[10][11][12], 3D reconstruction of insects[13], video surveillance[14], 3D printing[15][16][17], tourism[18][19], creation of 3D models for virtual reality[20][21][22][23], forensic science[24][25][26] and building inspection[27][28][29].

Plugins have been developed to improve interoperability with other software tools: Blender[30][31], Autodesk Maya[32] and Houdini[33].

AliceVision Association

The AliceVision project is supported by the ALICEVISION association, “a non-profit organization whose ambition is to democratize 3D digitization technologies from photographs”[34]

See also

References

  1. 1.0 1.1 Griwodz, Carsten; Gasparini, Simone; Calvet, Lilian; Gurdjos, Pierre; Castan, Fabien; Maujean, Benoit; De Lillo, Gregoire; Lanthony, Yann (2021-06-24). "AliceVision Meshroom: An open-source 3D reconstruction pipeline" (in en). Proceedings of the 12th ACM Multimedia Systems Conference (Istanbul Turkey: ACM): 241–247. doi:10.1145/3458305.3478443. ISBN 978-1-4503-8434-6. https://dl.acm.org/doi/10.1145/3458305.3478443. 
  2. "SIGGRAPH 2018 : Mikros présente une solution de photogrammétrie open source" (in fr). 3dvf. https://www.3dvf.com/actualite-24068-siggraph-2018-mikros-presente-solution-photogrammetrie-open-source-html/. 
  3. Mozar, Amit (2018-10-08). "AliceVision: Advanced 3D Reconstruction, Photomodeling and Camera Tracking through Photogrammetry". The Virtual Assist. http://thevirtualassist.net/3d-reconstruction-camera-tracking-photogrammetry-alicevision/. 
  4. Collins, T.; Pizarro, D.; Gasparini, S.; Bourdel, N.; Chauvet, P.; Canis, M.; Calvet, L.; Bartoli, A. (January 2021). "Augmented Reality Guided Laparoscopic Surgery of the Uterus". IEEE Transactions on Medical Imaging 40 (1): 371–380. doi:10.1109/TMI.2020.3027442. ISSN 0278-0062. PMID 32986548. https://ieeexplore.ieee.org/document/9207920. 
  5. Sá, Asla Medeiros E; Bartolome, Adolfo Ibañez; Rodriguez Echavarria, Karina; Marroquim, Ricardo; Fonseca, Vivian Luiz (2019). "Accessible Digitisation and Visualisation of Open Cultural Heritage Assets". Eurographics Workshop on Graphics and Cultural Heritage: 10 pages. doi:10.2312/GCH.20191349. ISSN 2312-6124. https://diglib.eg.org/handle/10.2312/gch20191349. 
  6. Bici, M.; Gherardini, F.; Campana, F.; Leali, F. (2020-11-11). "A preliminary approach on point cloud reconstruction of bronze statues through oriented photogrammetry: the "Principe Ellenistico" case". IOP Conference Series: Materials Science and Engineering 949: 012117. doi:10.1088/1757-899X/949/1/012117. ISSN 1757-899X. https://iopscience.iop.org/article/10.1088/1757-899X/949/1/012117. 
  7. Milàn, Jesper; Falkingham, Peter L.; Mueller-Töwe, Inken Juliane (2020-11-17). "Small ornithopod dinosaur tracks and crocodilian remains from the Middle Jurassic Bagå Formation, Bornholm, Denmark: Important additions to the rare Middle Jurassic vertebrate faunas of Northern Europe" (in en). Bulletin of the Geological Society of Denmark 68: 245–253. doi:10.37570/bgsd-2020-68-11. ISSN 2245-7070. https://2dgf.dk/publikationer/bulletin/bulletin-volume-68-2020/#11. 
  8. Falkingham, Peter L.; Turner, Morgan L.; Gatesy, Stephen M. (November 2020). Cavin, Lionel. ed. "Constructing and testing hypotheses of dinosaur foot motions from fossil tracks using digitization and simulation" (in en). Palaeontology 63 (6): 865–880. doi:10.1111/pala.12502. ISSN 0031-0239. https://onlinelibrary.wiley.com/doi/10.1111/pala.12502. 
  9. Lallensack, Jens; Buchwitz, Michael; Romilio, Anthony (2020-11-19). Photogrammetry in ichnology: 3D model generation, visualisation, and data extraction. doi:10.31223/x5j30d. http://eartharxiv.org/repository/view/1833/. 
  10. Carlucci, Roberto; Cipriano, Giulia; Santacesaria, Francesca Cornelia; Ricci, Pasquale; Maglietta, Rosalia; Petrella, Antonio; Mazzariol, Sandro; De Padova, Diana et al. (December 2020). "Exploring data from an individual stranding of a Cuvier's beaked whale in the Gulf of Taranto (Northern Ionian Sea, Central-eastern Mediterranean Sea)" (in en). Journal of Experimental Marine Biology and Ecology 533: 151473. doi:10.1016/j.jembe.2020.151473. https://linkinghub.elsevier.com/retrieve/pii/S0022098120302380. 
  11. Ortega-Jiménez, Victor M.; Sanford, Christopher P. (2021-05-15). "Beyond the Kármán gait: knifefish swimming in periodic and irregular vortex streets" (in en). Journal of Experimental Biology 224 (10): jeb238808. doi:10.1242/jeb.238808. ISSN 0022-0949. PMID 33795417. https://journals.biologists.com/jeb/article/224/10/jeb238808/238109/Beyond-the-Karman-gait-knifefish-swimming-in. 
  12. Chowdhury, Shah Ariful Hoque; Nguyen, Chuong; Li, Hengjia; Hartley, Richard (July 2021). "Fixed-Lens camera setup and calibrated image registration for multifocus multiview 3D reconstruction" (in en). Neural Computing and Applications 33 (13): 7421–7440. doi:10.1007/s00521-021-05926-7. ISSN 0941-0643. https://link.springer.com/10.1007/s00521-021-05926-7. 
  13. Plum, Fabian; Labonte, David (2021-04-12). "scAnt —an open-source platform for the creation of 3D models of arthropods (and other small objects)" (in en). PeerJ 9: e11155. doi:10.7717/peerj.11155. ISSN 2167-8359. PMID 33954036. PMC 8048404. https://peerj.com/articles/11155. 
  14. Wallner, Marco; Steininger, Daniel; Widhalm, Verena; Schörghuber, Matthias; Beleznai, Csaba (2021), Del Bimbo, Alberto; Cucchiara, Rita; Sclaroff, Stan et al., eds., "RGB-D Railway Platform Monitoring and Scene Understanding for Enhanced Passenger Safety" (in en), Pattern Recognition. ICPR International Workshops and Challenges (Cham: Springer International Publishing) 12667: pp. 656–671, doi:10.1007/978-3-030-68787-8_47, ISBN 978-3-030-68786-1, http://link.springer.com/10.1007/978-3-030-68787-8_47, retrieved 2021-11-14 
  15. Horvath, Joan; Cameron, Rich (2020), "3D Printer Workflow and Software" (in en), Mastering 3D Printing (Berkeley, CA: Apress): pp. 51–92, doi:10.1007/978-1-4842-5842-2_3, ISBN 978-1-4842-5841-5, http://link.springer.com/10.1007/978-1-4842-5842-2_3, retrieved 2021-11-14 
  16. Bellis, Robert; Rembielak, Agata; A. Barnes, Elizabeth; Paudel, Moti; Ravi, Ananth (2021). "Additive manufacturing (3D printing) in superficial brachytherapy". Journal of Contemporary Brachytherapy 13 (4): 468–482. doi:10.5114/jcb.2021.108602. ISSN 1689-832X. PMID 34484363. 
  17. Ravi, T.; Ranganathan, Rajesh; Ramesh, S. P.; Dandotiya, Devendra Singh (2021), Dave, Harshit K.; Davim, J. Paulo, eds., "3D Printed Personalized Orthotic Inserts Using Photogrammetry and FDM Technology" (in en), Fused Deposition Modeling Based 3D Printing (Cham: Springer International Publishing): pp. 349–361, doi:10.1007/978-3-030-68024-4_18, ISBN 978-3-030-68023-7, https://link.springer.com/10.1007/978-3-030-68024-4_18, retrieved 2021-11-14 
  18. Nomikou, Paraskevi; Pehlivanides, George; El Saer, A.; Karantzalos, Konstantinos; Stentoumis, Christos; Bejelou, Konstantina; Antoniou, Varvara; Douza, Maria et al. (2020). "Novel Virtual Reality Solutions for Captivating Virtual Underwater Tours Targeting the Cultural and Tourism Industries". Proceedings of the 6th International Conference on Geographical Information Systems Theory, Applications and Management (Prague, Czech Republic: SCITEPRESS - Science and Technology Publications): 7–13. doi:10.5220/0009819700070013. ISBN 978-989-758-425-1. http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0009819700070013. 
  19. Poux, Florent; Valembois, Quentin; Mattes, Christian; Kobbelt, Leif; Billen, Roland (2020-08-11). "Initial User-Centered Design of a Virtual Reality Heritage System: Applications for Digital Tourism" (in en). Remote Sensing 12 (16): 2583. doi:10.3390/rs12162583. ISSN 2072-4292. 
  20. El Saer, A.; Stentoumis, C.; Kalisperakis, I.; Nomikou, P. (2020-08-25). "Developing a Strategy for Precise 3D Modelling of Large-Scale Scenes for Vr" (in en). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B4-2020: 567–574. doi:10.5194/isprs-archives-XLIII-B4-2020-567-2020. ISSN 2194-9034. https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B4-2020/567/2020/. 
  21. Oersen, Carmenita; Wyngaard, Ruchen; Nkabinde, Lebogang (2020-12-07). "An Immersive Mobile Application For Improved Learning and Virtual Tour Experience: A Nature Reserve Perspective". 2020 ITU Kaleidoscope: Industry-Driven Digital Transformation (ITU K) (Ha Noi, Vietnam: IEEE): 1–8. doi:10.23919/ITUK50268.2020.9303226. ISBN 978-92-61-31391-3. https://ieeexplore.ieee.org/document/9303226. 
  22. De Paolis, Lucio Tommaso; De Luca, Valerio; Gatto, Carola; D’Errico, Giovanni; Paladini, Giovanna Ilenia (2020), De Paolis, Lucio Tommaso; Bourdot, Patrick, eds., "Photogrammetric 3D Reconstruction of Small Objects for a Real-Time Fruition" (in en), Augmented Reality, Virtual Reality, and Computer Graphics (Cham: Springer International Publishing) 12242: pp. 375–394, doi:10.1007/978-3-030-58465-8_28, ISBN 978-3-030-58464-1, https://link.springer.com/10.1007/978-3-030-58465-8_28, retrieved 2021-11-14 
  23. El Saer, A.; Stentoumis, C.; Kalisperakis, I.; Grammatikopoulos, L.; Nomikou, P.; Vlasopoulos, O. (2020-08-12). "3D Reconstruction and Mesh Optimization of Underwater Spaces for Virtual Reality" (in en). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B2-2020: 949–956. doi:10.5194/isprs-archives-XLIII-B2-2020-949-2020. ISSN 2194-9034. https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B2-2020/949/2020/. 
  24. Galanakis, George; Zabulis, Xenophon; Evdaimon, Theodore; Fikenscher, Sven-Eric; Allertseder, Sebastian; Tsikrika, Theodora; Vrochidis, Stefanos (2021-07-30). "A Study of 3D Digitisation Modalities for Crime Scene Investigation" (in en). Forensic Sciences 1 (2): 56–85. doi:10.3390/forensicsci1020008. ISSN 2673-6756. 
  25. Tóth, Dénes; Petrus, Karola; Heckmann, Veronika; Simon, Gábor; Poór, Viktor Soma (July 2021). "Application of photogrammetry in forensic pathology education of medical students in response to COVID‐19" (in en). Journal of Forensic Sciences 66 (4): 1533–1537. doi:10.1111/1556-4029.14709. ISSN 0022-1198. PMID 33764562. 
  26. Larsen, Hannah; Budka, Marcin; Bennett, Matthew R. (July 2021). "Technological innovation in the recovery and analysis of 3D forensic footwear evidence: Structure from motion (SfM) photogrammetry" (in en). Science & Justice 61 (4): 356–368. doi:10.1016/j.scijus.2021.04.003. ISSN 1355-0306. PMID 34172124. https://linkinghub.elsevier.com/retrieve/pii/S1355030621000447. 
  27. Yokota, Hiroshi, ed (2021-04-19) (in en). Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations (1 ed.). CRC Press. doi:10.1201/9780429279119. ISBN 978-0-429-27911-9. https://www.taylorfrancis.com/books/9781000173758. 
  28. Merkle, D.; Schmitt, A.; Reiterer, A. (2020-08-14). "Sensor Evaluation for Crack Detection in Concrete Bridges" (in en). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B2-2020: 1107–1114. doi:10.5194/isprs-archives-XLIII-B2-2020-1107-2020. ISSN 2194-9034. https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B2-2020/1107/2020/. 
  29. Perry, Brandon J.; Guo, Yanlin; Atadero, Rebecca; van de Lindt, John W. (November 2020). "Streamlined bridge inspection system utilizing unmanned aerial vehicles (UAVs) and machine learning" (in en). Measurement 164: 108048. doi:10.1016/j.measurement.2020.108048. https://linkinghub.elsevier.com/retrieve/pii/S0263224120305868. 
  30. "Blender importer from Meshroom". https://github.com/SBCV/Blender-Addon-Photogrammetry-Importer. 
  31. "meshroom2blender". https://github.com/tibicen/meshroom2blender. 
  32. "MeshroomMaya". https://github.com/alicevision/MeshroomMaya. 
  33. "AliceVision Plugin : Houdini importer". https://www.sidefx.com/tutorials/alicevision-plugin/. 
  34. "ALICEVISION association official website". https://alicevision.org/association/. 

External Links