Software:FLEUR
Developer(s) | The FLEUR team |
---|---|
Stable release | MaX-R6.2
/ May 3, 2023 |
Repository | iffgit |
Written in | Fortran |
Operating system | Linux |
License | MIT License |
Website | www |
The FLEUR code[1] (also Fleur or fleur) is an open-source scientific software package for the simulation of material properties of crystalline solids, thin films, and surfaces. It implements Kohn-Sham density functional theory (DFT) in terms of the all-electron full-potential linearized augmented-plane-wave method. With this, it is a realization of one of the most precise DFT methodologies.[2] The code has the common features of a modern DFT simulation package. In the past, major applications have been in the field of magnetism, spintronics, quantum materials, e.g. in ultrathin films,[3] complex magnetism like in spin spirals or magnetic Skyrmion lattices,[4] and in spin-orbit related physics, e.g. in graphene[5] and topological insulators.[6]
Simulation model
The physical model used in Fleur simulations is based on the (F)LAPW(+LO) method, but it is also possible to make use of an APW+lo description. The calculations employ the scalar-relativistic approximation for the kinetic energy operator.[7][8] Spin-orbit coupling can optionally be included.[9] It is possible to describe noncollinear magnetic structures periodic in the unit cell.[10] The description of spin spirals with deviating periodicity is based on the generalized Bloch theorem.[11] The code offers native support for the description of three-dimensional periodic structures, i.e., bulk crystals, as well as two-dimensional periodic structures like thin films and surfaces.[12] For the description of the exchange-correlation functional different parametrizations for the local density approximation, several generalized-gradient approximations, Hybrid functionals,[13] and partial support for the libXC library are implemented. It is also possible to make use of a DFT+U description.[14]
Features
The Fleur code can be used to directly calculate many different material properties. Among these are:
- The total energy[15]
- Forces on atoms[16][17]
- Density of states (including projections onto individual atoms and orbitals characters)
- Band structures (including projections onto individual atoms and orbitals characters and band unfolding)
- Charges, magnetic moments, and orbital moments at individual atoms
- Electric multipole moments and magnetic dipole moments
- Heisenberg interaction parameters (via the magnetic force theorem or via comparing different magnetic structures)
- Magnetocrystalline anisotropy energy (via the magnetic force theorem or via comparing different magnetic structures)
- Dzyaloshinskii-Moriya interaction parameters (via the magnetic force theorem or via comparing different magnetic structures)
- Spin-spiral dispersion relations (via the magnetic force theorem or via comparing different magnetic structures)
- EELS spectra
- Magnetic circular dichroism spectra
- The Work function for surfaces
For the calculation of optical properties Fleur can be combined with the Spex code to perform calculations employing the GW approximation to many-body perturbation theory.[18] Together with the Wannier90 library it is also possible to extract the Kohn-Sham eigenfunctions in terms of Wannier functions.[19]
See also
- List of quantum chemistry and solid state physics software
References
- ↑ Wortmann, Daniel; Michalicek, Gregor; Baadji, Nadjib; Betzinger, Markus; Bihlmayer, Gustav; Bröder, Jens; Burnus, Tobias; Enkovaara, Jussi et al. (3 May 2023), FLEUR, Zenodo, doi:10.5281/zenodo.7576163, https://doi.org/10.5281/zenodo.7576163
- ↑ Lejaeghere, K.; Bihlmayer, G.; Bjorkman, T.; Blaha, P.; Blugel, S.; Blum, V.; Caliste, D.; Castelli, I. E. et al. (25 March 2016). "Reproducibility in density functional theory calculations of solids". Science 351 (6280): aad3000. doi:10.1126/science.aad3000. PMID 27013736. Bibcode: 2016Sci...351.....L. https://biblio.ugent.be/publication/7191263.
- ↑ Bode, M.; Heide, M.; von Bergmann, K.; Ferriani, P.; Heinze, S.; Bihlmayer, G.; Kubetzka, A.; Pietzsch, O. et al. (May 2007). "Chiral magnetic order at surfaces driven by inversion asymmetry". Nature 447 (7141): 190–193. doi:10.1038/nature05802. PMID 17495922. Bibcode: 2007Natur.447..190B.
- ↑ Heinze, Stefan; von Bergmann, Kirsten; Menzel, Matthias; Brede, Jens; Kubetzka, André; Wiesendanger, Roland; Bihlmayer, Gustav; Blügel, Stefan (September 2011). "Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions". Nature Physics 7 (9): 713–718. doi:10.1038/nphys2045. Bibcode: 2011NatPh...7..713H.
- ↑ Han, Wei; Kawakami, Roland K.; Gmitra, Martin; Fabian, Jaroslav (October 2014). "Graphene spintronics". Nature Nanotechnology 9 (10): 794–807. doi:10.1038/nnano.2014.214. PMID 25286274. Bibcode: 2014NatNa...9..794H.
- ↑ Eremeev, Sergey V.; Landolt, Gabriel; Menshchikova, Tatiana V.; Slomski, Bartosz; Koroteev, Yury M.; Aliev, Ziya S.; Babanly, Mahammad B.; Henk, Jürgen et al. (January 2012). "Atom-specific spin mapping and buried topological states in a homologous series of topological insulators". Nature Communications 3 (1): 635. doi:10.1038/ncomms1638. PMID 22273673. Bibcode: 2012NatCo...3..635E.
- ↑ Koelling, D D; Harmon, B N (28 August 1977). "A technique for relativistic spin-polarised calculations". Journal of Physics C: Solid State Physics 10 (16): 3107–3114. doi:10.1088/0022-3719/10/16/019. Bibcode: 1977JPhC...10.3107K.
- ↑ Takeda, T. (March 1978). "The scalar relativistic approximation". Zeitschrift für Physik B 32 (1): 43–48. doi:10.1007/BF01322185. Bibcode: 1978ZPhyB..32...43T.
- ↑ MacDonald, A H; Picket, W E; Koelling, D D (20 May 1980). "A linearised relativistic augmented-plane-wave method utilising approximate pure spin basis functions". Journal of Physics C: Solid State Physics 13 (14): 2675–2683. doi:10.1088/0022-3719/13/14/009. Bibcode: 1980JPhC...13.2675M.
- ↑ Kurz, Ph.; Förster, F.; Nordström, L.; Bihlmayer, G.; Blügel, S. (January 2004). "Ab initio treatment of noncollinear magnets with the full-potential linearized augmented plane wave method". Physical Review B 69 (2): 024415. doi:10.1103/PhysRevB.69.024415. Bibcode: 2004PhRvB..69b4415K. http://juser.fz-juelich.de/record/35286/files/42206.pdf.
- ↑ Heide, M.; Bihlmayer, G.; Blügel, S. (October 2009). "Describing Dzyaloshinskii–Moriya spirals from first principles". Physica B: Condensed Matter 404 (18): 2678–2683. doi:10.1016/j.physb.2009.06.070. Bibcode: 2009PhyB..404.2678H.
- ↑ Krakauer, H.; Posternak, M.; Freeman, A. J. (15 February 1979). "Linearized augmented plane-wave method for the electronic band structure of thin films". Physical Review B 19 (4): 1706–1719. doi:10.1103/PhysRevB.19.1706. Bibcode: 1979PhRvB..19.1706K.
- ↑ Betzinger, Markus; Friedrich, Christoph; Blügel, Stefan (24 May 2010). "Hybrid functionals within the all-electron FLAPW method: Implementation and applications of PBE0". Physical Review B 81 (19): 195117. doi:10.1103/PhysRevB.81.195117. Bibcode: 2010PhRvB..81s5117B.
- ↑ Shick, A. B.; Liechtenstein, A. I.; Pickett, W. E. (15 October 1999). "Implementation of the LDA+U method using the full-potential linearized augmented plane-wave basis". Physical Review B 60 (15): 10763–10769. doi:10.1103/PhysRevB.60.10763. Bibcode: 1999PhRvB..6010763S.
- ↑ Weinert, M.; Wimmer, E.; Freeman, A. J. (15 October 1982). "Total-energy all-electron density functional method for bulk solids and surfaces". Physical Review B 26 (8): 4571–4578. doi:10.1103/PhysRevB.26.4571. Bibcode: 1982PhRvB..26.4571W.
- ↑ Yu, Rici; Singh, D.; Krakauer, H. (15 March 1991). "All-electron and pseudopotential force calculations using the linearized-augmented-plane-wave method". Physical Review B 43 (8): 6411–6422. doi:10.1103/PhysRevB.43.6411. PMID 9998079. Bibcode: 1991PhRvB..43.6411Y.
- ↑ Klüppelberg, Daniel A.; Betzinger, Markus; Blügel, Stefan (5 January 2015). "Atomic force calculations within the all-electron FLAPW method: Treatment of core states and discontinuities at the muffin-tin sphere boundary". Physical Review B 91 (3): 035105. doi:10.1103/PhysRevB.91.035105. Bibcode: 2015PhRvB..91c5105K.
- ↑ Friedrich, Christoph; Blügel, Stefan; Schindlmayr, Arno (3 March 2010). "Efficient implementation of the G W approximation within the all-electron FLAPW method". Physical Review B 81 (12): 125102. doi:10.1103/PhysRevB.81.125102. Bibcode: 2010PhRvB..81l5102F.
- ↑ Freimuth, F.; Mokrousov, Y.; Wortmann, D.; Heinze, S.; Blügel, S. (17 July 2008). "Maximally localized Wannier functions within the FLAPW formalism". Physical Review B 78 (3): 035120. doi:10.1103/PhysRevB.78.035120. Bibcode: 2008PhRvB..78c5120F.
External links
![]() | Original source: https://en.wikipedia.org/wiki/FLEUR.
Read more |