Software:FLEUR

From HandWiki
FLEUR
Developer(s)The FLEUR team
Stable release
MaX-R6.2 / May 3, 2023; 10 months ago (2023-05-03)
Repositoryiffgit.fz-juelich.de/fleur/fleur
Written inFortran
Operating systemLinux
LicenseMIT License
Websitewww.flapw.de

The FLEUR code[1] (also Fleur or fleur) is an open-source scientific software package for the simulation of material properties of crystalline solids, thin films, and surfaces. It implements Kohn-Sham density functional theory (DFT) in terms of the all-electron full-potential linearized augmented-plane-wave method. With this, it is a realization of one of the most precise DFT methodologies.[2] The code has the common features of a modern DFT simulation package. In the past, major applications have been in the field of magnetism, spintronics, quantum materials, e.g. in ultrathin films,[3] complex magnetism like in spin spirals or magnetic Skyrmion lattices,[4] and in spin-orbit related physics, e.g. in graphene[5] and topological insulators.[6]

Simulation model

The physical model used in Fleur simulations is based on the (F)LAPW(+LO) method, but it is also possible to make use of an APW+lo description. The calculations employ the scalar-relativistic approximation for the kinetic energy operator.[7][8] Spin-orbit coupling can optionally be included.[9] It is possible to describe noncollinear magnetic structures periodic in the unit cell.[10] The description of spin spirals with deviating periodicity is based on the generalized Bloch theorem.[11] The code offers native support for the description of three-dimensional periodic structures, i.e., bulk crystals, as well as two-dimensional periodic structures like thin films and surfaces.[12] For the description of the exchange-correlation functional different parametrizations for the local density approximation, several generalized-gradient approximations, Hybrid functionals,[13] and partial support for the libXC library are implemented. It is also possible to make use of a DFT+U description.[14]

Features

The Fleur code can be used to directly calculate many different material properties. Among these are:

  • The total energy[15]
  • Forces on atoms[16][17]
  • Density of states (including projections onto individual atoms and orbitals characters)
  • Band structures (including projections onto individual atoms and orbitals characters and band unfolding)
  • Charges, magnetic moments, and orbital moments at individual atoms
  • Electric multipole moments and magnetic dipole moments
  • Heisenberg interaction parameters (via the magnetic force theorem or via comparing different magnetic structures)
  • Magnetocrystalline anisotropy energy (via the magnetic force theorem or via comparing different magnetic structures)
  • Dzyaloshinskii-Moriya interaction parameters (via the magnetic force theorem or via comparing different magnetic structures)
  • Spin-spiral dispersion relations (via the magnetic force theorem or via comparing different magnetic structures)
  • EELS spectra
  • Magnetic circular dichroism spectra
  • The Work function for surfaces

For the calculation of optical properties Fleur can be combined with the Spex code to perform calculations employing the GW approximation to many-body perturbation theory.[18] Together with the Wannier90 library it is also possible to extract the Kohn-Sham eigenfunctions in terms of Wannier functions.[19]

See also

  • List of quantum chemistry and solid state physics software

References

  1. Wortmann, Daniel; Michalicek, Gregor; Baadji, Nadjib; Betzinger, Markus; Bihlmayer, Gustav; Bröder, Jens; Burnus, Tobias; Enkovaara, Jussi et al. (3 May 2023), FLEUR, Zenodo, doi:10.5281/zenodo.7576163, https://doi.org/10.5281/zenodo.7576163 
  2. Lejaeghere, K.; Bihlmayer, G.; Bjorkman, T.; Blaha, P.; Blugel, S.; Blum, V.; Caliste, D.; Castelli, I. E. et al. (25 March 2016). "Reproducibility in density functional theory calculations of solids". Science 351 (6280): aad3000. doi:10.1126/science.aad3000. PMID 27013736. Bibcode2016Sci...351.....L. https://biblio.ugent.be/publication/7191263. 
  3. Bode, M.; Heide, M.; von Bergmann, K.; Ferriani, P.; Heinze, S.; Bihlmayer, G.; Kubetzka, A.; Pietzsch, O. et al. (May 2007). "Chiral magnetic order at surfaces driven by inversion asymmetry". Nature 447 (7141): 190–193. doi:10.1038/nature05802. PMID 17495922. Bibcode2007Natur.447..190B. 
  4. Heinze, Stefan; von Bergmann, Kirsten; Menzel, Matthias; Brede, Jens; Kubetzka, André; Wiesendanger, Roland; Bihlmayer, Gustav; Blügel, Stefan (September 2011). "Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions". Nature Physics 7 (9): 713–718. doi:10.1038/nphys2045. Bibcode2011NatPh...7..713H. 
  5. Han, Wei; Kawakami, Roland K.; Gmitra, Martin; Fabian, Jaroslav (October 2014). "Graphene spintronics". Nature Nanotechnology 9 (10): 794–807. doi:10.1038/nnano.2014.214. PMID 25286274. Bibcode2014NatNa...9..794H. 
  6. Eremeev, Sergey V.; Landolt, Gabriel; Menshchikova, Tatiana V.; Slomski, Bartosz; Koroteev, Yury M.; Aliev, Ziya S.; Babanly, Mahammad B.; Henk, Jürgen et al. (January 2012). "Atom-specific spin mapping and buried topological states in a homologous series of topological insulators". Nature Communications 3 (1): 635. doi:10.1038/ncomms1638. PMID 22273673. Bibcode2012NatCo...3..635E. 
  7. Koelling, D D; Harmon, B N (28 August 1977). "A technique for relativistic spin-polarised calculations". Journal of Physics C: Solid State Physics 10 (16): 3107–3114. doi:10.1088/0022-3719/10/16/019. Bibcode1977JPhC...10.3107K. 
  8. Takeda, T. (March 1978). "The scalar relativistic approximation". Zeitschrift für Physik B 32 (1): 43–48. doi:10.1007/BF01322185. Bibcode1978ZPhyB..32...43T. 
  9. MacDonald, A H; Picket, W E; Koelling, D D (20 May 1980). "A linearised relativistic augmented-plane-wave method utilising approximate pure spin basis functions". Journal of Physics C: Solid State Physics 13 (14): 2675–2683. doi:10.1088/0022-3719/13/14/009. Bibcode1980JPhC...13.2675M. 
  10. Kurz, Ph.; Förster, F.; Nordström, L.; Bihlmayer, G.; Blügel, S. (January 2004). "Ab initio treatment of noncollinear magnets with the full-potential linearized augmented plane wave method". Physical Review B 69 (2): 024415. doi:10.1103/PhysRevB.69.024415. Bibcode2004PhRvB..69b4415K. http://juser.fz-juelich.de/record/35286/files/42206.pdf. 
  11. Heide, M.; Bihlmayer, G.; Blügel, S. (October 2009). "Describing Dzyaloshinskii–Moriya spirals from first principles". Physica B: Condensed Matter 404 (18): 2678–2683. doi:10.1016/j.physb.2009.06.070. Bibcode2009PhyB..404.2678H. 
  12. Krakauer, H.; Posternak, M.; Freeman, A. J. (15 February 1979). "Linearized augmented plane-wave method for the electronic band structure of thin films". Physical Review B 19 (4): 1706–1719. doi:10.1103/PhysRevB.19.1706. Bibcode1979PhRvB..19.1706K. 
  13. Betzinger, Markus; Friedrich, Christoph; Blügel, Stefan (24 May 2010). "Hybrid functionals within the all-electron FLAPW method: Implementation and applications of PBE0". Physical Review B 81 (19): 195117. doi:10.1103/PhysRevB.81.195117. Bibcode2010PhRvB..81s5117B. 
  14. Shick, A. B.; Liechtenstein, A. I.; Pickett, W. E. (15 October 1999). "Implementation of the LDA+U method using the full-potential linearized augmented plane-wave basis". Physical Review B 60 (15): 10763–10769. doi:10.1103/PhysRevB.60.10763. Bibcode1999PhRvB..6010763S. 
  15. Weinert, M.; Wimmer, E.; Freeman, A. J. (15 October 1982). "Total-energy all-electron density functional method for bulk solids and surfaces". Physical Review B 26 (8): 4571–4578. doi:10.1103/PhysRevB.26.4571. Bibcode1982PhRvB..26.4571W. 
  16. Yu, Rici; Singh, D.; Krakauer, H. (15 March 1991). "All-electron and pseudopotential force calculations using the linearized-augmented-plane-wave method". Physical Review B 43 (8): 6411–6422. doi:10.1103/PhysRevB.43.6411. PMID 9998079. Bibcode1991PhRvB..43.6411Y. 
  17. Klüppelberg, Daniel A.; Betzinger, Markus; Blügel, Stefan (5 January 2015). "Atomic force calculations within the all-electron FLAPW method: Treatment of core states and discontinuities at the muffin-tin sphere boundary". Physical Review B 91 (3): 035105. doi:10.1103/PhysRevB.91.035105. Bibcode2015PhRvB..91c5105K. 
  18. Friedrich, Christoph; Blügel, Stefan; Schindlmayr, Arno (3 March 2010). "Efficient implementation of the G W approximation within the all-electron FLAPW method". Physical Review B 81 (12): 125102. doi:10.1103/PhysRevB.81.125102. Bibcode2010PhRvB..81l5102F. 
  19. Freimuth, F.; Mokrousov, Y.; Wortmann, D.; Heinze, S.; Blügel, S. (17 July 2008). "Maximally localized Wannier functions within the FLAPW formalism". Physical Review B 78 (3): 035120. doi:10.1103/PhysRevB.78.035120. Bibcode2008PhRvB..78c5120F. 

External links