Spectral submanifold

From HandWiki
Schematic illustration of a spectral submanifold [math]\displaystyle{ \mathcal{W}(E) }[/math] emanating from a spectral subspace [math]\displaystyle{ E }[/math]. A trajectory [math]\displaystyle{ p(t) }[/math] in the reduced coordinates is mapped to the phase space via the manifold parametrization [math]\displaystyle{ W(p) }[/math].[1]

In dynamical systems, a spectral submanifold (SSM) is the unique smoothest invariant manifold serving as the nonlinear extension of a spectral subspace of a linear dynamical system under the addition of nonlinearities.[2] SSM theory provides conditions for when invariant properties of eigenspaces of a linear dynamical system can be extended to a nonlinear system, and therefore motivates the use of SSMs in nonlinear dimensionality reduction.

Definition

Consider a nonlinear ordinary differential equation of the form

[math]\displaystyle{ \frac{dx}{dt} = Ax + f_0(x),\quad x\in \R^n, }[/math]

with constant matrix [math]\displaystyle{ \ A\in \R^{n\times n} }[/math] and the nonlinearities contained in the smooth function [math]\displaystyle{ f_0 = \mathcal{O}(|x|^2) }[/math].

Assume that [math]\displaystyle{ \text{Re} \lambda_j \lt 0 }[/math] for all eigenvalues [math]\displaystyle{ \lambda_j,\ j = 1,\ldots, n }[/math] of [math]\displaystyle{ A }[/math], that is, the origin is an asymptotically stable fixed point. Now select a span [math]\displaystyle{ E = \text{span}\, \{v^E_{1},\ldots v^E_{m}\} }[/math] of [math]\displaystyle{ m }[/math] eigenvectors [math]\displaystyle{ v^E_{i} }[/math] of [math]\displaystyle{ A }[/math]. Then, the eigenspace [math]\displaystyle{ E }[/math] is an invariant subspace of the linearized system

[math]\displaystyle{ \frac{dx}{dt} = Ax,\quad x\in \R^n. }[/math]

Under addition of the nonlinearity [math]\displaystyle{ f_0 }[/math] to the linear system, [math]\displaystyle{ E }[/math] generally perturbs into infinitely many invariant manifolds. Among these invariant manifolds, the unique smoothest one is referred to as the spectral submanifold.

An equivalent result for unstable SSMs holds for [math]\displaystyle{ \text{Re} \lambda_j \gt 0 }[/math].

Existence

The spectral submanifold tangent to [math]\displaystyle{ E }[/math] at the origin is guaranteed to exist provided that certain non-resonance conditions are satisfied by the eigenvalues [math]\displaystyle{ \lambda^E_i }[/math] in the spectrum of [math]\displaystyle{ E }[/math].[3] In particular, there can be no linear combination of [math]\displaystyle{ \lambda^E_i }[/math] equal to one of the eigenvalues of [math]\displaystyle{ A }[/math] outside of the spectral subspace. If there is such an outer resonance, one can include the resonant mode into [math]\displaystyle{ E }[/math] and extend the analysis to a higher-dimensional SSM pertaining to the extended spectral subspace.

Non-autonomous extension

The theory on spectral submanifolds extends to nonlinear non-autonomous systems of the form

[math]\displaystyle{ \frac{dx}{dt} = Ax + f_0(x) + \epsilon f_1(x, \Omega t),\quad \Omega\in \mathbb{T}^k,\ 0\le \epsilon \ll 1, }[/math]

with [math]\displaystyle{ f_1 : \R^n \times \mathbb{T}^k \to \R^n }[/math] a quasiperiodic forcing term.[4]

Significance

Spectral submanifolds are useful for rigorous nonlinear dimensionality reduction in dynamical systems. The reduction of a high-dimensional phase space to a lower-dimensional manifold can lead to major simplifications by allowing for an accurate description of the system's main asymptotic behaviour.[5] For a known dynamical system, SSMs can be computed analytically by solving the invariance equations, and reduced models on SSMs may be employed for prediction of the response to forcing.[6]

Furthermore these manifolds may also be extracted directly from trajectory data of a dynamical system with the use of machine learning algorithms.[7]

See also

References

  1. Jain, Shobhit; Haller, George (2022). "How to compute invariant manifolds and their reduced dynamics in high-dimensional finite element models". Nonlinear Dynamics 107 (2): 1417–1450. doi:10.1007/s11071-021-06957-4. 
  2. Haller, George; Ponsioen, Sten (2016). "Nonlinear normal modes and spectral submanifolds: Existence, uniqueness and use in model reduction". Nonlinear Dynamics 86 (3): 1493–1534. doi:10.1007/s11071-016-2974-z. https://link.springer.com/article/10.1007/s11071-016-2974-z. 
  3. Cabré, P.; Fontich, E.; de la Llave, R. (2003). "The parametrization method for invariant manifolds I: manifolds associated to non-resonant spectral subspaces". Indiana Univ. Math. J. 52: 283–328. doi:10.1512/iumj.2003.52.2245. 
  4. Haro, A.; de la Llave, R. (2006). "A parameterisation method for the computation of invariant tori and their whiskers in quasiperiodic maps: Rigorous results". Differ. Equ. 228 (2): 530–579. doi:10.1016/j.jde.2005.10.005. Bibcode2006JDE...228..530H. 
  5. Rega, Giuseppe; Troger, Hans (2005). "Dimension Reduction of Dynamical Systems: Methods, Models, Applications". Nonlinear Dynamics 41 (1–3): 1–15. doi:10.1007/s11071-005-2790-3. https://www.researchgate.net/publication/226099099. 
  6. Ponsioen, Sten; Pedergnana, Tiemo; Haller, George (2018). "Automated computation of autonomous spectral submanifolds for nonlinear modal analysis". Journal of Sound and Vibration 420: 269–295. doi:10.1016/j.jsv.2018.01.048. Bibcode2018JSV...420..269P. https://www.sciencedirect.com/science/article/pii/S0022460X18300701. 
  7. Cenedese, Mattia; Axås, Joar; Bäuerlein, Bastian; Avila, Kerstin; Haller, George (2022). "Data-driven modeling and prediction of non-linearizable dynamics via spectral submanifolds". Nature Communications 13 (1): 872. doi:10.1038/s41467-022-28518-y. PMID 35169152. Bibcode2022NatCo..13..872C. 

External links