Stufe (algebra)

From HandWiki

In field theory, a branch of mathematics, the Stufe (/ʃtuːfə/; German: level) s(F) of a field F is the least number of squares that sum to −1. If −1 cannot be written as a sum of squares, s(F) = [math]\displaystyle{ \infty }[/math]. In this case, F is a formally real field. Albrecht Pfister proved that the Stufe, if finite, is always a power of 2, and that conversely every power of 2 occurs.[1]

Powers of 2

If [math]\displaystyle{ s(F)\ne\infty }[/math] then [math]\displaystyle{ s(F)=2^k }[/math] for some natural number [math]\displaystyle{ k }[/math].[1][2]

Proof: Let [math]\displaystyle{ k \in \mathbb N }[/math] be chosen such that [math]\displaystyle{ 2^k \leq s(F) \lt 2^{k+1} }[/math]. Let [math]\displaystyle{ n = 2^k }[/math]. Then there are [math]\displaystyle{ s = s(F) }[/math] elements [math]\displaystyle{ e_1, \ldots, e_s \in F\setminus\{0\} }[/math] such that

[math]\displaystyle{ 0 = \underbrace{1 + e_1^2 + \cdots + e_{n-1}^2 }_{=:\,a} + \underbrace{e_n^2 + \cdots + e_s^2}_{=:\,b}\;. }[/math]

Both [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math] are sums of [math]\displaystyle{ n }[/math] squares, and [math]\displaystyle{ a \ne 0 }[/math], since otherwise [math]\displaystyle{ s(F)\lt 2^k }[/math], contrary to the assumption on [math]\displaystyle{ k }[/math].

According to the theory of Pfister forms, the product [math]\displaystyle{ ab }[/math] is itself a sum of [math]\displaystyle{ n }[/math] squares, that is, [math]\displaystyle{ ab = c_1^2 + \cdots + c_n^2 }[/math] for some [math]\displaystyle{ c_i \in F }[/math]. But since [math]\displaystyle{ a+b=0 }[/math], we also have [math]\displaystyle{ -a^2 = ab }[/math], and hence

[math]\displaystyle{ -1 = \frac{ab}{a^2} = \left(\frac{c_1}{a} \right)^2 + \cdots + \left(\frac{c_n}{a} \right)^2, }[/math]

and thus [math]\displaystyle{ s(F) = n = 2^k }[/math].

Positive characteristic

Any field [math]\displaystyle{ F }[/math] with positive characteristic has [math]\displaystyle{ s(F) \le 2 }[/math].[3]

Proof: Let [math]\displaystyle{ p = \operatorname{char}(F) }[/math]. It suffices to prove the claim for [math]\displaystyle{ \mathbb F_p }[/math].

If [math]\displaystyle{ p = 2 }[/math] then [math]\displaystyle{ -1 = 1 = 1^2 }[/math], so [math]\displaystyle{ s(F)=1 }[/math].

If [math]\displaystyle{ p\gt 2 }[/math] consider the set [math]\displaystyle{ S=\{x^2 : x \in \mathbb F_p\} }[/math] of squares. [math]\displaystyle{ S\setminus\{0\} }[/math] is a subgroup of index [math]\displaystyle{ 2 }[/math] in the cyclic group [math]\displaystyle{ \mathbb F_p^\times }[/math] with [math]\displaystyle{ p-1 }[/math] elements. Thus [math]\displaystyle{ S }[/math] contains exactly [math]\displaystyle{ \tfrac{p+1}2 }[/math] elements, and so does [math]\displaystyle{ -1-S }[/math]. Since [math]\displaystyle{ \mathbb F_p }[/math] only has [math]\displaystyle{ p }[/math] elements in total, [math]\displaystyle{ S }[/math] and [math]\displaystyle{ -1-S }[/math] cannot be disjoint, that is, there are [math]\displaystyle{ x,y\in\mathbb F_p }[/math] with [math]\displaystyle{ S\ni x^2=-1-y^2\in-1-S }[/math] and thus [math]\displaystyle{ -1=x^2+y^2 }[/math].

Properties

The Stufe s(F) is related to the Pythagoras number p(F) by p(F) ≤ s(F) + 1.[4] If F is not formally real then s(F) ≤ p(F) ≤ s(F) + 1.[5][6] The additive order of the form (1), and hence the exponent of the Witt group of F is equal to 2s(F).[7][8]

Examples

Notes

  1. 1.0 1.1 Rajwade (1993) p.13
  2. Lam (2005) p.379
  3. 3.0 3.1 Rajwade (1993) p.33
  4. Rajwade (1993) p.44
  5. Rajwade (1993) p.228
  6. Lam (2005) p.395
  7. 7.0 7.1 Milnor & Husemoller (1973) p.75
  8. 8.0 8.1 8.2 Lam (2005) p.380
  9. 9.0 9.1 Lam (2005) p.381
  10. Singh, Sahib (1974). "Stufe of a finite field". Fibonacci Quarterly 12: 81–82. ISSN 0015-0517. 

References

Further reading

  • Knebusch, Manfred; Scharlau, Winfried (1980). Algebraic theory of quadratic forms. Generic methods and Pfister forms. DMV Seminar. 1. Notes taken by Heisook Lee. Boston - Basel - Stuttgart: Birkhäuser Verlag. ISBN 3-7643-1206-8.