Syndetic set
From HandWiki
In mathematics, a syndetic set is a subset of the natural numbers having the property of "bounded gaps": that the sizes of the gaps in the sequence of natural numbers is bounded.
Definition
A set [math]\displaystyle{ S \sub \mathbb{N} }[/math] is called syndetic if for some finite subset [math]\displaystyle{ F }[/math] of [math]\displaystyle{ \mathbb{N} }[/math]
- [math]\displaystyle{ \bigcup_{n \in F} (S-n) = \mathbb{N} }[/math]
where [math]\displaystyle{ S-n = \{m \in \mathbb{N} : m+n \in S \} }[/math]. Thus syndetic sets have "bounded gaps"; for a syndetic set [math]\displaystyle{ S }[/math], there is an integer [math]\displaystyle{ p=p(S) }[/math] such that [math]\displaystyle{ [a, a+1, a+2, ... , a+p] \bigcap S \neq \emptyset }[/math] for any [math]\displaystyle{ a \in \mathbb{N} }[/math].
See also
References
- McLeod, Jillian (2000). "Some Notions of Size in Partial Semigroups". Topology Proceedings 25 (Summer 2000): 317—332. http://topology.nipissingu.ca/tp/reprints/v25/tp25217.pdf.
- "Minimal Idempotents and Ergodic Ramsey Theory". Topics in Dynamics and Ergodic Theory. London Mathematical Society Lecture Note Series. 310. Cambridge University Press, Cambridge. 2003. pp. 8—39. doi:10.1017/CBO9780511546716.004. http://www.math.ohio-state.edu/~vitaly/vbkatsiveli20march03.pdf.
- "Partition regular structures contained in large sets are abundant". Journal of Combinatorial Theory. Series A 93 (1): 18—36. 2001. doi:10.1006/jcta.2000.3061.
Original source: https://en.wikipedia.org/wiki/Syndetic set.
Read more |