# Category:Ergodic theory

Computing portal |

Here is a list of articles in the Ergodic theory category of the Computing portal that unifies foundations of mathematics and computations using computers.

This category roughly corresponds to **MSC 37A** *Ergodic theory*.

## Pages in category "Ergodic theory"

The following 49 pages are in this category, out of 49 total.

- Ergodic theory
*(computing)*

### A

- Arithmetic combinatorics
*(computing)* - Artin billiard
*(computing)* - Axiom A
*(computing)*

### B

- Bernoulli scheme
*(computing)*

### C

- Commutation theorem
*(computing)*

### D

- S. G. Dani
*(biography)*

### E

- Ellis–Numakura lemma
*(computing)* - Equidistributed sequence
*(computing)* - Equidistribution theorem
*(computing)* - Ergodic flow
*(computing)* - Ergodic hypothesis
*(physics)* - Ergodic process
*(computing)* - Ergodic Ramsey theory
*(computing)* - Ergodic sequence
*(computing)* - Ergodicity
*(computing)*

### F

- Fermi–Pasta–Ulam–Tsingou problem
*(computing)* - Fundamental domain
*(computing)*

### H

- Hadamard's dynamical system
*(computing)* - Hopf decomposition
*(computing)*

### I

- IP set
*(computing)*

### K

- Kac's lemma
*(computing)* - Kingman's subadditive ergodic theorem
*(computing)* - Kolmogorov automorphism
*(computing)* - Krylov–Bogolyubov theorem
*(computing)*

### L

- Lattice (discrete subgroup)
*(computing)* - Linear flow on the torus
*(computing)*

### M

- Maximal ergodic theorem
*(computing)* - Maximising measure
*(computing)* - Mixing (mathematics)
*(computing)* - Mixing
*(physics)*

### N

- No-wandering-domain theorem
*(computing)*

### O

- Ornstein isomorphism theorem
*(computing)* - Oseledets theorem
*(computing)*

### P

- Piecewise syndetic set
*(computing)* - Poincaré recurrence theorem
*(computing)*

### Q

- Quantum ergodicity
*(physics)*

### R

- Ratner's theorems
*(computing)* - Rice's formula
*(computing)* - Rokhlin lemma
*(computing)*

### S

- Stationary ergodic process
*(computing)* - Subshift of finite type
*(computing)* - Syndetic set
*(computing)*

### T

- Thick set
*(computing)* - Topological entropy
*(computing)*

### U

- Unit tangent bundle
*(computing)*

### V

- Volume entropy
*(computing)*

### W

- Wandering set
*(computing)* - Wiener–Wintner theorem
*(computing)*