Table of Clebsch–Gordan coefficients

From HandWiki
Short description: Used for adding angular momentum values in quantum mechanics

This is a table of Clebsch–Gordan coefficients used for adding angular momentum values in quantum mechanics. The overall sign of the coefficients for each set of constant [math]\displaystyle{ j_1 }[/math], [math]\displaystyle{ j_2 }[/math], [math]\displaystyle{ j }[/math] is arbitrary to some degree and has been fixed according to the Condon–Shortley and Wigner sign convention as discussed by Baird and Biedenharn.[1] Tables with the same sign convention may be found in the Particle Data Group's Review of Particle Properties[2] and in online tables.[3]

Formulation

The Clebsch–Gordan coefficients are the solutions to

[math]\displaystyle{ |j_1,j_2;J,M\rangle = \sum_{m_1=-j_1}^{j_1} \sum_{m_2=-j_2}^{j_2} |j_1,m_1;j_2,m_2\rangle \langle j_1,j_2;m_1,m_2\mid j_1,j_2;J,M\rangle }[/math]

Explicitly:

[math]\displaystyle{ \begin{align} & \langle j_1,j_2;m_1,m_2\mid j_1,j_2;J,M\rangle \\[6pt] = {} & \delta_{M,m_1+m_2} \sqrt{\frac{(2J+1)(J+j_1-j_2)!(J-j_1+j_2)!(j_1+j_2-J)!}{(j_1+j_2+J+1)!}}\ \times {} \\[6pt] &\sqrt{(J+M)!(J-M)!(j_1-m_1)!(j_1+m_1)!(j_2-m_2)!(j_2+m_2)!}\ \times {} \\[6pt] &\sum_k \frac{(-1)^k}{k!(j_1+j_2-J-k)!(j_1-m_1-k)!(j_2+m_2-k)!(J-j_2+m_1+k)!(J-j_1-m_2+k)!}. \end{align} }[/math]

The summation is extended over all integer k for which the argument of every factorial is nonnegative.[4]

For brevity, solutions with M < 0 and j1 < j2 are omitted. They may be calculated using the simple relations

[math]\displaystyle{ \langle j_1,j_2;m_1,m_2\mid j_1,j_2;J,M\rangle=(-1)^{J-j_1-j_2}\langle j_1,j_2;-m_1,-m_2\mid j_1,j_2;J,-M\rangle. }[/math]

and

[math]\displaystyle{ \langle j_1,j_2;m_1,m_2\mid j_1,j_2;J,M\rangle=(-1)^{J-j_1-j_2} \langle j_2,j_1;m_2,m_1\mid j_2, j_1;J,M\rangle. }[/math]

Specific values

The Clebsch–Gordan coefficients for j values less than or equal to 5/2 are given below.[5]

 j2 = 0

When j2 = 0, the Clebsch–Gordan coefficients are given by [math]\displaystyle{ \delta_{j,j_1}\delta_{m,m_1} }[/math].

 j1 = 1/2j2 = 1/2

m = 1
j
m1m2
1
1/21/2 [math]\displaystyle{ 1 }[/math]
m = −1
j
m1m2
1
1/2, −1/2 [math]\displaystyle{ 1 }[/math]
m = 0
j
m1m2
1 0
1/2, −1/2 [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math]
1/21/2 [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{2}} }[/math]

 j1 = 1,  j2 = 1/2

m = 3/2
j
m1m2
3/2
1, 1/2 [math]\displaystyle{ 1 }[/math]
m = 1/2
j
m1m2
3/2 1/2
1, −1/2 [math]\displaystyle{ \sqrt{\frac{1}{3}} }[/math] [math]\displaystyle{ \sqrt{\frac{2}{3}} }[/math]
0, 1/2 [math]\displaystyle{ \sqrt{\frac{2}{3}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{3}} }[/math]

 j1 = 1,  j2 = 1

m = 2
j
m1m2
2
1, 1 [math]\displaystyle{ 1 }[/math]
m = 1
j
m1m2
2 1
1, 0 [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math]
0, 1 [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{2}} }[/math]
m = 0
j
m1m2
2 1 0
1, −1 [math]\displaystyle{ \sqrt{\frac{1}{6}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{3}} }[/math]
0, 0 [math]\displaystyle{ \sqrt{\frac{2}{3}} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{3}} }[/math]
−1, 1 [math]\displaystyle{ \sqrt{\frac{1}{6}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{3}} }[/math]

 j1 = 3/2j2 = 1/2

m = 2
j
m1m2
2
3/21/2 [math]\displaystyle{ 1 }[/math]
m = 1
j
m1m2
2 1
3/2, −1/2 [math]\displaystyle{ \frac{1}{2} }[/math] [math]\displaystyle{ \sqrt{\frac{3}{4}} }[/math]
1/21/2 [math]\displaystyle{ \sqrt{\frac{3}{4}} }[/math] [math]\displaystyle{ -\frac{1}{2} }[/math]
m = 0
j
m1m2
2 1
1/2, −1/2 [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math]
1/21/2 [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{2}} }[/math]

 j1 = 3/2j2 = 1

m = 5/2
j
m1m2
5/2
3/2, 1 [math]\displaystyle{ 1 }[/math]
m = 3/2
j
m1m2
5/2 3/2
3/2, 0 [math]\displaystyle{ \sqrt{\frac{2}{5}} }[/math] [math]\displaystyle{ \sqrt{\frac{3}{5}} }[/math]
1/2, 1 [math]\displaystyle{ \sqrt{\frac{3}{5}} }[/math] [math]\displaystyle{ -\sqrt{\frac{2}{5}} }[/math]
m = 1/2
j
m1m2
5/2 3/2 1/2
3/2, −1 [math]\displaystyle{ \sqrt{\frac{1}{10}} }[/math] [math]\displaystyle{ \sqrt{\frac{2}{5}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math]
1/2, 0 [math]\displaystyle{ \sqrt{\frac{3}{5}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{15}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{3}} }[/math]
1/2, 1 [math]\displaystyle{ \sqrt{\frac{3}{10}} }[/math] [math]\displaystyle{ -\sqrt{\frac{8}{15}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{6}} }[/math]

 j1 = 3/2j2 = 3/2

m = 3
j
m1m2
3
3/23/2 [math]\displaystyle{ 1 }[/math]
m = 2
j
m1m2
3 2
3/21/2 [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math]
1/23/2 [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{2}} }[/math]
m = 1
j
m1m2
3 2 1
3/2, −1/2 [math]\displaystyle{ \sqrt{\frac{1}{5}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ \sqrt{\frac{3}{10}} }[/math]
1/21/2 [math]\displaystyle{ \sqrt{\frac{3}{5}} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -\sqrt{\frac{2}{5}} }[/math]
1/23/2 [math]\displaystyle{ \sqrt{\frac{1}{5}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ \sqrt{\frac{3}{10}} }[/math]
m = 0
j
m1m2
3 2 1 0
3/2, −3/2 [math]\displaystyle{ \sqrt{\frac{1}{20}} }[/math] [math]\displaystyle{ \frac{1}{2} }[/math] [math]\displaystyle{ \sqrt{\frac{9}{20}} }[/math] [math]\displaystyle{ \frac{1}{2} }[/math]
1/2, −1/2 [math]\displaystyle{ \sqrt{\frac{9}{20}} }[/math] [math]\displaystyle{ \frac{1}{2} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{20}} }[/math] [math]\displaystyle{ -\frac{1}{2} }[/math]
1/21/2 [math]\displaystyle{ \sqrt{\frac{9}{20}} }[/math] [math]\displaystyle{ -\frac{1}{2} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{20}} }[/math] [math]\displaystyle{ \frac{1}{2} }[/math]
3/23/2 [math]\displaystyle{ \sqrt{\frac{1}{20}} }[/math] [math]\displaystyle{ -\frac{1}{2} }[/math] [math]\displaystyle{ \sqrt{\frac{9}{20}} }[/math] [math]\displaystyle{ -\frac{1}{2} }[/math]

 j1 = 2,  j2 = 1/2

m = 5/2
j
m1m2
5/2
2, 1/2 [math]\displaystyle{ 1 }[/math]
m = 3/2
j
m1m2
5/2 3/2
2, −1/2 [math]\displaystyle{ \sqrt{\frac{1}{5}} }[/math] [math]\displaystyle{ \sqrt{\frac{4}{5}} }[/math]
1, 1/2 [math]\displaystyle{ \sqrt{\frac{4}{5}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{5}} }[/math]
m = 1/2
j
m1m2
5/2 3/2
1, −1/2 [math]\displaystyle{ \sqrt{\frac{2}{5}} }[/math] [math]\displaystyle{ \sqrt{\frac{3}{5}} }[/math]
0, 1/2 [math]\displaystyle{ \sqrt{\frac{3}{5}} }[/math] [math]\displaystyle{ -\sqrt{\frac{2}{5}} }[/math]

 j1 = 2,  j2 = 1

m = 3
j
m1m2
3
2, 1 [math]\displaystyle{ 1 }[/math]
m = 2
j
m1m2
3 2
2, 0 [math]\displaystyle{ \sqrt{\frac{1}{3}} }[/math] [math]\displaystyle{ \sqrt{\frac{2}{3}} }[/math]
1, 1 [math]\displaystyle{ \sqrt{\frac{2}{3}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{3}} }[/math]
m = 1
j
m1m2
3 2 1
2, −1 [math]\displaystyle{ \sqrt{\frac{1}{15}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{3}} }[/math] [math]\displaystyle{ \sqrt{\frac{3}{5}} }[/math]
1, 0 [math]\displaystyle{ \sqrt{\frac{8}{15}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{6}} }[/math] [math]\displaystyle{ -\sqrt{\frac{3}{10}} }[/math]
0, 1 [math]\displaystyle{ \sqrt{\frac{2}{5}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{10}} }[/math]
m = 0
j
m1m2
3 2 1
1, −1 [math]\displaystyle{ \sqrt{\frac{1}{5}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ \sqrt{\frac{3}{10}} }[/math]
0, 0 [math]\displaystyle{ \sqrt{\frac{3}{5}} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -\sqrt{\frac{2}{5}} }[/math]
−1, 1 [math]\displaystyle{ \sqrt{\frac{1}{5}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ \sqrt{\frac{3}{10}} }[/math]

 j1 = 2,  j2 = 3/2

m = 7/2
j
m1m2
7/2
2, 3/2 [math]\displaystyle{ 1 }[/math]
m = 5/2
j
m1m2
7/2 5/2
2, 1/2 [math]\displaystyle{ \sqrt{\frac{3}{7}} }[/math] [math]\displaystyle{ \sqrt{\frac{4}{7}} }[/math]
1, 3/2 [math]\displaystyle{ \sqrt{\frac{4}{7}} }[/math] [math]\displaystyle{ -\sqrt{\frac{3}{7}} }[/math]
m = 3/2
j
m1m2
7/2 5/2 3/2
2, −1/2 [math]\displaystyle{ \sqrt{\frac{1}{7}} }[/math] [math]\displaystyle{ \sqrt{\frac{16}{35}} }[/math] [math]\displaystyle{ \sqrt{\frac{2}{5}} }[/math]
1, 1/2 [math]\displaystyle{ \sqrt{\frac{4}{7}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{35}} }[/math] [math]\displaystyle{ -\sqrt{\frac{2}{5}} }[/math]
0, 3/2 [math]\displaystyle{ \sqrt{\frac{2}{7}} }[/math] [math]\displaystyle{ -\sqrt{\frac{18}{35}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{5}} }[/math]
m = 1/2
j
m1m2
7/2 5/2 3/2 1/2
2, −3/2 [math]\displaystyle{ \sqrt{\frac{1}{35}} }[/math] [math]\displaystyle{ \sqrt{\frac{6}{35}} }[/math] [math]\displaystyle{ \sqrt{\frac{2}{5}} }[/math] [math]\displaystyle{ \sqrt{\frac{2}{5}} }[/math]
1, −1/2 [math]\displaystyle{ \sqrt{\frac{12}{35}} }[/math] [math]\displaystyle{ \sqrt{\frac{5}{14}} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -\sqrt{\frac{3}{10}} }[/math]
0, 1/2 [math]\displaystyle{ \sqrt{\frac{18}{35}} }[/math] [math]\displaystyle{ -\sqrt{\frac{3}{35}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{5}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{5}} }[/math]
−1, 3/2 [math]\displaystyle{ \sqrt{\frac{4}{35}} }[/math] [math]\displaystyle{ -\sqrt{\frac{27}{70}} }[/math] [math]\displaystyle{ \sqrt{\frac{2}{5}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{10}} }[/math]

 j1 = 2,  j2 = 2

m = 4
j
m1m2
4
2, 2 [math]\displaystyle{ 1 }[/math]
m = 3
j
m1m2
4 3
2, 1 [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math]
1, 2 [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{2}} }[/math]
m = 2
j
m1m2
4 3 2
2, 0 [math]\displaystyle{ \sqrt{\frac{3}{14}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ \sqrt{\frac{2}{7}} }[/math]
1, 1 [math]\displaystyle{ \sqrt{\frac{4}{7}} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -\sqrt{\frac{3}{7}} }[/math]
0, 2 [math]\displaystyle{ \sqrt{\frac{3}{14}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ \sqrt{\frac{2}{7}} }[/math]
m = 1
j
m1m2
4 3 2 1
2, −1 [math]\displaystyle{ \sqrt{\frac{1}{14}} }[/math] [math]\displaystyle{ \sqrt{\frac{3}{10}} }[/math] [math]\displaystyle{ \sqrt{\frac{3}{7}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{5}} }[/math]
1, 0 [math]\displaystyle{ \sqrt{\frac{3}{7}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{5}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{14}} }[/math] [math]\displaystyle{ -\sqrt{\frac{3}{10}} }[/math]
0, 1 [math]\displaystyle{ \sqrt{\frac{3}{7}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{5}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{14}} }[/math] [math]\displaystyle{ \sqrt{\frac{3}{10}} }[/math]
−1, 2 [math]\displaystyle{ \sqrt{\frac{1}{14}} }[/math] [math]\displaystyle{ -\sqrt{\frac{3}{10}} }[/math] [math]\displaystyle{ \sqrt{\frac{3}{7}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{5}} }[/math]
m = 0
j
m1m2
4 3 2 1 0
2, −2 [math]\displaystyle{ \sqrt{\frac{1}{70}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{10}} }[/math] [math]\displaystyle{ \sqrt{\frac{2}{7}} }[/math] [math]\displaystyle{ \sqrt{\frac{2}{5}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{5}} }[/math]
1, −1 [math]\displaystyle{ \sqrt{\frac{8}{35}} }[/math] [math]\displaystyle{ \sqrt{\frac{2}{5}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{14}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{10}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{5}} }[/math]
0, 0 [math]\displaystyle{ \sqrt{\frac{18}{35}} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -\sqrt{\frac{2}{7}} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ \sqrt{\frac{1}{5}} }[/math]
−1, 1 [math]\displaystyle{ \sqrt{\frac{8}{35}} }[/math] [math]\displaystyle{ -\sqrt{\frac{2}{5}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{14}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{10}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{5}} }[/math]
−2, 2 [math]\displaystyle{ \sqrt{\frac{1}{70}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{10}} }[/math] [math]\displaystyle{ \sqrt{\frac{2}{7}} }[/math] [math]\displaystyle{ -\sqrt{\frac{2}{5}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{5}} }[/math]

 j1 = 5/2j2 = 1/2

m = 3
j
m1m2
3
5/21/2 [math]\displaystyle{ 1 }[/math]
m = 2
j
m1m2
3 2
5/2, −1/2 [math]\displaystyle{ \sqrt{\frac{1}{6}} }[/math] [math]\displaystyle{ \sqrt{\frac{5}{6}} }[/math]
3/21/2 [math]\displaystyle{ \sqrt{\frac{5}{6}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{6}} }[/math]
m = 1
j
m1m2
3 2
3/2, −1/2 [math]\displaystyle{ \sqrt{\frac{1}{3}} }[/math] [math]\displaystyle{ \sqrt{\frac{2}{3}} }[/math]
1/21/2 [math]\displaystyle{ \sqrt{\frac{2}{3}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{3}} }[/math]
m = 0
j
m1m2
3 2
1/2, −1/2 [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math]
1/21/2 [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{2}} }[/math]

 j1 = 5/2j2 = 1

m = 7/2
j
m1m2
7/2
5/2, 1 [math]\displaystyle{ 1 }[/math]
m = 5/2
j
m1m2
7/2 5/2
5/2, 0 [math]\displaystyle{ \sqrt{\frac{2}{7}} }[/math] [math]\displaystyle{ \sqrt{\frac{5}{7}} }[/math]
3/2, 1 [math]\displaystyle{ \sqrt{\frac{5}{7}} }[/math] [math]\displaystyle{ -\sqrt{\frac{2}{7}} }[/math]
m = 3/2
j
m1m2
7/2 5/2 3/2
5/2, −1 [math]\displaystyle{ \sqrt{\frac{1}{21}} }[/math] [math]\displaystyle{ \sqrt{\frac{2}{7}} }[/math] [math]\displaystyle{ \sqrt{\frac{2}{3}} }[/math]
3/2, 0 [math]\displaystyle{ \sqrt{\frac{10}{21}} }[/math] [math]\displaystyle{ \sqrt{\frac{9}{35}} }[/math] [math]\displaystyle{ -\sqrt{\frac{4}{15}} }[/math]
1/2, 1 [math]\displaystyle{ \sqrt{\frac{10}{21}} }[/math] [math]\displaystyle{ -\sqrt{\frac{16}{35}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{15}} }[/math]
m = 1/2
j
m1m2
7/2 5/2 3/2
3/2, −1 [math]\displaystyle{ \sqrt{\frac{1}{7}} }[/math] [math]\displaystyle{ \sqrt{\frac{16}{35}} }[/math] [math]\displaystyle{ \sqrt{\frac{2}{5}} }[/math]
1/2, 0 [math]\displaystyle{ \sqrt{\frac{4}{7}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{35}} }[/math] [math]\displaystyle{ -\sqrt{\frac{2}{5}} }[/math]
1/2, 1 [math]\displaystyle{ \sqrt{\frac{2}{7}} }[/math] [math]\displaystyle{ -\sqrt{\frac{18}{35}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{5}} }[/math]

 j1 = 5/2j2 = 3/2

m = 4
j
m1m2
4
5/23/2 [math]\displaystyle{ 1 }[/math]
m = 3
j
m1m2
4 3
5/21/2 [math]\displaystyle{ \sqrt{\frac{3}{8}} }[/math] [math]\displaystyle{ \sqrt{\frac{5}{8}} }[/math]
3/23/2 [math]\displaystyle{ \sqrt{\frac{5}{8}} }[/math] [math]\displaystyle{ -\sqrt{\frac{3}{8}} }[/math]
m = 2
j
m1m2
4 3 2
5/2, −1/2 [math]\displaystyle{ \sqrt{\frac{3}{28}} }[/math] [math]\displaystyle{ \sqrt{\frac{5}{12}} }[/math] [math]\displaystyle{ \sqrt{\frac{10}{21}} }[/math]
3/21/2 [math]\displaystyle{ \sqrt{\frac{15}{28}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{12}} }[/math] [math]\displaystyle{ -\sqrt{\frac{8}{21}} }[/math]
1/23/2 [math]\displaystyle{ \sqrt{\frac{5}{14}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{7}} }[/math]
m = 1
j
m1m2
4 3 2 1
5/2, −3/2 [math]\displaystyle{ \sqrt{\frac{1}{56}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{8}} }[/math] [math]\displaystyle{ \sqrt{\frac{5}{14}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math]
3/2, −1/2 [math]\displaystyle{ \sqrt{\frac{15}{56}} }[/math] [math]\displaystyle{ \sqrt{\frac{49}{120}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{42}} }[/math] [math]\displaystyle{ -\sqrt{\frac{3}{10}} }[/math]
1/21/2 [math]\displaystyle{ \sqrt{\frac{15}{28}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{60}} }[/math] [math]\displaystyle{ -\sqrt{\frac{25}{84}} }[/math] [math]\displaystyle{ \sqrt{\frac{3}{20}} }[/math]
1/23/2 [math]\displaystyle{ \sqrt{\frac{5}{28}} }[/math] [math]\displaystyle{ -\sqrt{\frac{9}{20}} }[/math] [math]\displaystyle{ \sqrt{\frac{9}{28}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{20}} }[/math]
m = 0
j
m1m2
4 3 2 1
3/2, −3/2 [math]\displaystyle{ \sqrt{\frac{1}{14}} }[/math] [math]\displaystyle{ \sqrt{\frac{3}{10}} }[/math] [math]\displaystyle{ \sqrt{\frac{3}{7}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{5}} }[/math]
1/2, −1/2 [math]\displaystyle{ \sqrt{\frac{3}{7}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{5}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{14}} }[/math] [math]\displaystyle{ -\sqrt{\frac{3}{10}} }[/math]
1/21/2 [math]\displaystyle{ \sqrt{\frac{3}{7}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{5}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{14}} }[/math] [math]\displaystyle{ \sqrt{\frac{3}{10}} }[/math]
3/23/2 [math]\displaystyle{ \sqrt{\frac{1}{14}} }[/math] [math]\displaystyle{ -\sqrt{\frac{3}{10}} }[/math] [math]\displaystyle{ \sqrt{\frac{3}{7}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{5}} }[/math]

 j1 = 5/2j2 = 2

m = 9/2
j
m1m2
9/2
5/2, 2 [math]\displaystyle{ 1 }[/math]
m = 7/2
j
m1m2
9/2 7/2
5/2, 1 [math]\displaystyle{ \frac{2}{3} }[/math] [math]\displaystyle{ \sqrt{\frac{5}{9}} }[/math]
3/2, 2 [math]\displaystyle{ \sqrt{\frac{5}{9}} }[/math] [math]\displaystyle{ -\frac{2}{3} }[/math]
m = 5/2
j
m1m2
9/2 7/2 5/2
5/2, 0 [math]\displaystyle{ \sqrt{\frac{1}{6}} }[/math] [math]\displaystyle{ \sqrt{\frac{10}{21}} }[/math] [math]\displaystyle{ \sqrt{\frac{5}{14}} }[/math]
3/2, 1 [math]\displaystyle{ \sqrt{\frac{5}{9}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{63}} }[/math] [math]\displaystyle{ -\sqrt{\frac{3}{7}} }[/math]
1/2, 2 [math]\displaystyle{ \sqrt{\frac{5}{18}} }[/math] [math]\displaystyle{ -\sqrt{\frac{32}{63}} }[/math] [math]\displaystyle{ \sqrt{\frac{3}{14}} }[/math]
m = 3/2
j
m1m2
9/2 7/2 5/2 3/2
5/2, −1 [math]\displaystyle{ \sqrt{\frac{1}{21}} }[/math] [math]\displaystyle{ \sqrt{\frac{5}{21}} }[/math] [math]\displaystyle{ \sqrt{\frac{3}{7}} }[/math] [math]\displaystyle{ \sqrt{\frac{2}{7}} }[/math]
3/2, 0 [math]\displaystyle{ \sqrt{\frac{5}{14}} }[/math] [math]\displaystyle{ \sqrt{\frac{2}{7}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{70}} }[/math] [math]\displaystyle{ -\sqrt{\frac{12}{35}} }[/math]
1/2, 1 [math]\displaystyle{ \sqrt{\frac{10}{21}} }[/math] [math]\displaystyle{ -\sqrt{\frac{2}{21}} }[/math] [math]\displaystyle{ -\sqrt{\frac{6}{35}} }[/math] [math]\displaystyle{ \sqrt{\frac{9}{35}} }[/math]
1/2, 2 [math]\displaystyle{ \sqrt{\frac{5}{42}} }[/math] [math]\displaystyle{ -\sqrt{\frac{8}{21}} }[/math] [math]\displaystyle{ \sqrt{\frac{27}{70}} }[/math] [math]\displaystyle{ -\sqrt{\frac{4}{35}} }[/math]
m = 1/2
j
m1m2
9/2 7/2 5/2 3/2 1/2
5/2, −2 [math]\displaystyle{ \sqrt{\frac{1}{126}} }[/math] [math]\displaystyle{ \sqrt{\frac{4}{63}} }[/math] [math]\displaystyle{ \sqrt{\frac{3}{14}} }[/math] [math]\displaystyle{ \sqrt{\frac{8}{21}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{3}} }[/math]
3/2, −1 [math]\displaystyle{ \sqrt{\frac{10}{63}} }[/math] [math]\displaystyle{ \sqrt{\frac{121}{315}} }[/math] [math]\displaystyle{ \sqrt{\frac{6}{35}} }[/math] [math]\displaystyle{ -\sqrt{\frac{2}{105}} }[/math] [math]\displaystyle{ -\sqrt{\frac{4}{15}} }[/math]
1/2, 0 [math]\displaystyle{ \sqrt{\frac{10}{21}} }[/math] [math]\displaystyle{ \sqrt{\frac{4}{105}} }[/math] [math]\displaystyle{ -\sqrt{\frac{8}{35}} }[/math] [math]\displaystyle{ -\sqrt{\frac{2}{35}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{5}} }[/math]
1/2, 1 [math]\displaystyle{ \sqrt{\frac{20}{63}} }[/math] [math]\displaystyle{ -\sqrt{\frac{14}{45}} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ \sqrt{\frac{5}{21}} }[/math] [math]\displaystyle{ -\sqrt{\frac{2}{15}} }[/math]
3/2, 2 [math]\displaystyle{ \sqrt{\frac{5}{126}} }[/math] [math]\displaystyle{ -\sqrt{\frac{64}{315}} }[/math] [math]\displaystyle{ \sqrt{\frac{27}{70}} }[/math] [math]\displaystyle{ -\sqrt{\frac{32}{105}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{15}} }[/math]

 j1 = 5/2j2 = 5/2

m = 5
j
m1m2
5
5/25/2 [math]\displaystyle{ 1 }[/math]
m = 4
j
m1m2
5 4
5/23/2 [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math]
3/25/2 [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{2}} }[/math]
m = 3
j
m1m2
5 4 3
5/21/2 [math]\displaystyle{ \sqrt{\frac{2}{9}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ \sqrt{\frac{5}{18}} }[/math]
3/23/2 [math]\displaystyle{ \sqrt{\frac{5}{9}} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -{\frac{2}{3}} }[/math]
1/25/2 [math]\displaystyle{ \sqrt{\frac{2}{9}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{2}} }[/math] [math]\displaystyle{ \sqrt{\frac{5}{18}} }[/math]
m = 2
j
m1m2
5 4 3 2
5/2, −1/2 [math]\displaystyle{ \sqrt{\frac{1}{12}} }[/math] [math]\displaystyle{ \sqrt{\frac{9}{28}} }[/math] [math]\displaystyle{ \sqrt{\frac{5}{12}} }[/math] [math]\displaystyle{ \sqrt{\frac{5}{28}} }[/math]
3/21/2 [math]\displaystyle{ \sqrt{\frac{5}{12}} }[/math] [math]\displaystyle{ \sqrt{\frac{5}{28}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{12}} }[/math] [math]\displaystyle{ -\sqrt{\frac{9}{28}} }[/math]
1/23/2 [math]\displaystyle{ \sqrt{\frac{5}{12}} }[/math] [math]\displaystyle{ -\sqrt{\frac{5}{28}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{12}} }[/math] [math]\displaystyle{ \sqrt{\frac{9}{28}} }[/math]
1/25/2 [math]\displaystyle{ \sqrt{\frac{1}{12}} }[/math] [math]\displaystyle{ -\sqrt{\frac{9}{28}} }[/math] [math]\displaystyle{ \sqrt{\frac{5}{12}} }[/math] [math]\displaystyle{ -\sqrt{\frac{5}{28}} }[/math]
m = 1
j
m1m2
5 4 3 2 1
5/2, −3/2 [math]\displaystyle{ \sqrt{\frac{1}{42}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{7}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{3}} }[/math] [math]\displaystyle{ \sqrt{\frac{5}{14}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{7}} }[/math]
3/2, −1/2 [math]\displaystyle{ \sqrt{\frac{5}{21}} }[/math] [math]\displaystyle{ \sqrt{\frac{5}{14}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{30}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{7}} }[/math] [math]\displaystyle{ -\sqrt{\frac{8}{35}} }[/math]
1/21/2 [math]\displaystyle{ \sqrt{\frac{10}{21}} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -\sqrt{\frac{4}{15}} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ \sqrt{\frac{9}{35}} }[/math]
1/23/2 [math]\displaystyle{ \sqrt{\frac{5}{21}} }[/math] [math]\displaystyle{ -\sqrt{\frac{5}{14}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{30}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{7}} }[/math] [math]\displaystyle{ -\sqrt{\frac{8}{35}} }[/math]
3/25/2 [math]\displaystyle{ \sqrt{\frac{1}{42}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{7}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{3}} }[/math] [math]\displaystyle{ -\sqrt{\frac{5}{14}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{7}} }[/math]
m = 0
j
m1m2
5 4 3 2 1 0
5/2, −5/2 [math]\displaystyle{ \sqrt{\frac{1}{252}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{28}} }[/math] [math]\displaystyle{ \sqrt{\frac{5}{36}} }[/math] [math]\displaystyle{ \sqrt{\frac{25}{84}} }[/math] [math]\displaystyle{ \sqrt{\frac{5}{14}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{6}} }[/math]
3/2, −3/2 [math]\displaystyle{ \sqrt{\frac{25}{252}} }[/math] [math]\displaystyle{ \sqrt{\frac{9}{28}} }[/math] [math]\displaystyle{ \sqrt{\frac{49}{180}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{84}} }[/math] [math]\displaystyle{ -\sqrt{\frac{9}{70}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{6}} }[/math]
1/2, −1/2 [math]\displaystyle{ \sqrt{\frac{25}{63}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{7}} }[/math] [math]\displaystyle{ -\sqrt{\frac{4}{45}} }[/math] [math]\displaystyle{ -\sqrt{\frac{4}{21}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{70}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{6}} }[/math]
1/21/2 [math]\displaystyle{ \sqrt{\frac{25}{63}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{7}} }[/math] [math]\displaystyle{ -\sqrt{\frac{4}{45}} }[/math] [math]\displaystyle{ \sqrt{\frac{4}{21}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{70}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{6}} }[/math]
3/23/2 [math]\displaystyle{ \sqrt{\frac{25}{252}} }[/math] [math]\displaystyle{ -\sqrt{\frac{9}{28}} }[/math] [math]\displaystyle{ \sqrt{\frac{49}{180}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{84}} }[/math] [math]\displaystyle{ -\sqrt{\frac{9}{70}} }[/math] [math]\displaystyle{ \sqrt{\frac{1}{6}} }[/math]
5/25/2 [math]\displaystyle{ \sqrt{\frac{1}{252}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{28}} }[/math] [math]\displaystyle{ \sqrt{\frac{5}{36}} }[/math] [math]\displaystyle{ -\sqrt{\frac{25}{84}} }[/math] [math]\displaystyle{ \sqrt{\frac{5}{14}} }[/math] [math]\displaystyle{ -\sqrt{\frac{1}{6}} }[/math]

SU(N) Clebsch–Gordan coefficients

Algorithms to produce Clebsch–Gordan coefficients for higher values of [math]\displaystyle{ j_1 }[/math] and [math]\displaystyle{ j_2 }[/math], or for the su(N) algebra instead of su(2), are known.[6] A web interface for tabulating SU(N) Clebsch–Gordan coefficients is readily available.

References

  1. Baird, C.E.; L. C. Biedenharn (October 1964). "On the Representations of the Semisimple Lie Groups. III. The Explicit Conjugation Operation for SUn". J. Math. Phys. 5 (12): 1723–1730. doi:10.1063/1.1704095. Bibcode1964JMP.....5.1723B. 
  2. Hagiwara, K. (July 2002). "Review of Particle Properties". Phys. Rev. D 66 (1): 010001. doi:10.1103/PhysRevD.66.010001. Bibcode2002PhRvD..66a0001H. http://pdg.lbl.gov/2002/clebrpp.pdf. Retrieved 2007-12-20. 
  3. Mathar, Richard J. (2006-08-14). "SO(3) Clebsch Gordan coefficients" (text). http://www.mpia.de/~mathar/progs/CGord. Retrieved 2012-10-15. 
  4. (2.41), p. 172, Quantum Mechanics: Foundations and Applications, Arno Bohm, M. Loewe, New York: Springer-Verlag, 3rd ed., 1993, ISBN:0-387-95330-2.
  5. Weissbluth, Mitchel (1978). Atoms and molecules. ACADEMIC PRESS. p. 28. ISBN 0-12-744450-5. https://archive.org/details/atomsmolecules0000weis.  Table 1.4 resumes the most common.
  6. Alex, A.; M. Kalus; A. Huckleberry; J. von Delft (February 2011). "A numerical algorithm for the explicit calculation of SU(N) and SL(N,C) Clebsch–Gordan coefficients". J. Math. Phys. 82: 023507. doi:10.1063/1.3521562. Bibcode2011JMP....52b3507A. 

External links