Truncated normal hurdle model
In econometrics, the truncated normal hurdle model is a variant of the Tobit model and was first proposed by Cragg in 1971.[1]
In a standard Tobit model, represented as [math]\displaystyle{ y=(x\beta+u) 1[x\beta+u\gt 0] }[/math], where [math]\displaystyle{ u|x\sim N(0,\sigma^2) }[/math]This model construction implicitly imposes two first order assumptions:[2]
- Since: [math]\displaystyle{ \partial P[y\gt 0]/\partial x_j=\varphi (x\beta/\sigma) \beta_j/\sigma }[/math] and [math]\displaystyle{ \partial \operatorname E[y\mid x,y \gt 0]/\partial x_j=\beta_j\{1-\theta(x\beta/\sigma\} }[/math], the partial effect of [math]\displaystyle{ x_j }[/math] on the probability [math]\displaystyle{ P[y\gt 0] }[/math] and the conditional expectation: [math]\displaystyle{ \operatorname E [y\mid x,y \gt 0] }[/math] has the same sign:[3]
- The relative effects of [math]\displaystyle{ x_h }[/math] and [math]\displaystyle{ x_j }[/math] on [math]\displaystyle{ P[y\gt 0] }[/math] and [math]\displaystyle{ \operatorname E [y\mid x,y\gt 0] }[/math] are identical, i.e.:
- [math]\displaystyle{ \frac{\partial P[y\gt 0]/\partial x_h}{\partial P[y\gt 0]/ \partial x_j}=\frac{\partial \operatorname E[y\mid x,y\gt 0]/ \partial x_h}{ \partial \operatorname E[y\mid x,y\gt 0]/ \partial x_j} = \frac{\beta_h}{\beta_j}| }[/math]
However, these two implicit assumptions are too strong and inconsistent with many contexts in economics. For instance, when we need to decide whether to invest and build a factory, the construction cost might be more influential than the product price; but once we have already built the factory, the product price is definitely more influential to the revenue. Hence, the implicit assumption (2) doesn't match this context.[4] The essence of this issue is that the standard Tobit implicitly models a very strong link between the participation decision [math]\displaystyle{ ( y=0 }[/math] or [math]\displaystyle{ y\gt 0) }[/math] and the amount decision (the magnitude of [math]\displaystyle{ y }[/math] when [math]\displaystyle{ y\gt 0 }[/math]). If a corner solution model is represented in a general form: [math]\displaystyle{ y=s \centerdot w, }[/math] , where [math]\displaystyle{ s }[/math] is the participate decision and [math]\displaystyle{ w }[/math] is the amount decision, standard Tobit model assumes:
- [math]\displaystyle{ s=1[x\beta +u\gt 0]; }[/math]
- [math]\displaystyle{ w=x\beta+u. }[/math]
To make the model compatible with more contexts, a natural improvement is to assume:
- [math]\displaystyle{ s=1[x \gamma +u\gt 0], \text{ where } u \sim N (0,1); }[/math]
[math]\displaystyle{ w=x\beta + e, }[/math] where the error term ([math]\displaystyle{ e }[/math]) is distributed as a truncated normal distribution with a density as [math]\displaystyle{ \varphi (\cdot) / \Phi \left(\frac{x\beta}\sigma \right)/\sigma; }[/math]
[math]\displaystyle{ s }[/math] and [math]\displaystyle{ w }[/math] are independent conditional on [math]\displaystyle{ x }[/math].
This is called Truncated Normal Hurdle Model, which is proposed in Cragg (1971).[1] By adding one more parameter and detach the amount decision with the participation decision, the model can fit more contexts. Under this model setup, the density of the [math]\displaystyle{ y }[/math] given [math]\displaystyle{ x }[/math] can be written as:
- [math]\displaystyle{ f (y\mid x)= [1-\Phi (\chi\gamma)]^{1[y = 0]} \cdot \left[\frac{\Phi\ (\chi\gamma)}{\Phi ( \chi\beta/\sigma)} \left. \varphi \left(\frac{y-\chi\beta}{\sigma}\right) \right/ \sigma\right] ^{1[y\gt 0]} }[/math]
From this density representation, it is obvious that it will degenerate to the standard Tobit model when [math]\displaystyle{ \gamma= \beta/\sigma. }[/math] This also shows that Truncated Normal Hurdle Model is more general than the standard Tobit model.
The Truncated Normal Hurdle Model is usually estimated through MLE. The log-likelihood function can be written as:
- [math]\displaystyle{ \begin{align} \ell(\beta,\gamma,\sigma) = {} & \sum_{i=1}^N 1[y_i = 0] \log [1-\Phi (x_i \gamma) ] +1 [y_i\gt 0] \log [\Phi (x_i \gamma)] \\[5pt] & {} + 1[y_i\gt 0] \left[ -\log \left[\Phi \left( \frac{x_i\beta} \sigma \right)\right] + \log \left(\varphi \left(\frac{y_i-x_i\beta} \sigma \right) \right) -\log (\sigma) \right] \end{align} }[/math]
From the log-likelihood function, [math]\displaystyle{ \gamma }[/math] can be estimated by a probit model and [math]\displaystyle{ (\beta,\sigma) }[/math] can be estimated by a truncated normal regression model.[5] Based on the estimates, consistent estimates for the Average Partial Effect can be estimated correspondingly.
See also
References
- ↑ 1.0 1.1 Cragg, John G. (September 1971). "Some Statistical Models for Limited Dependent Variables with Application to the Demand for Durable Goods". Econometrica 39 (5): 829–844. doi:10.2307/1909582.
- ↑ Wooldridge, J. (2002): Econometric Analysis of Cross Section and Panel Data, MIT Press, Cambridge, Mass, pp 690.
- ↑ Here, the notation follows Wooldridge (2002). Function [math]\displaystyle{ \theta (x)=\lambda' }[/math] where [math]\displaystyle{ \lambda (x) = \varphi (\chi)/\Phi (\chi), }[/math] can be proved to be between 0 and 1.
- ↑ For more application example of corner solution model, refer to: Daniel J. Phaneuf, (1999): “A Dual Approach to Modeling Corner Solutions in Recreation Demand”,Journal of Environmental Economics and Management, Volume 37, Issue 1, Pages 85-105, ISSN 0095-0696.
- ↑ Wooldridge, J. (2002): Econometric Analysis of Cross Section and Panel Data, MIT Press, Cambridge, Mass, pp 692-694.
Original source: https://en.wikipedia.org/wiki/Truncated normal hurdle model.
Read more |