Turan sieve
In mathematics, in the field of number theory, the Turán sieve is a technique for estimating the size of "sifted sets" of positive integers which satisfy a set of conditions which are expressed by congruences. It was developed by Pál Turán in 1934.
Description
In terms of sieve theory the Turán sieve is of combinatorial type: deriving from a rudimentary form of the inclusion-exclusion principle. The result gives an upper bound for the size of the sifted set.
Let A be a set of positive integers ≤ x and let P be a set of primes. For each p in P, let Ap denote the set of elements of A divisible by p and extend this to let Ad the intersection of the Ap for p dividing d, when d is a product of distinct primes from P. Further let A1 denote A itself. Let z be a positive real number and P(z) denote the product of the primes in P which are ≤ z. The object of the sieve is to estimate
- [math]\displaystyle{ S(A,P,z) = \left\vert A \setminus \bigcup_{p \in P(z)} A_p \right\vert . }[/math]
We assume that |Ad| may be estimated, when d is a prime p by
- [math]\displaystyle{ \left\vert A_p \right\vert = \frac{1}{f(p)} X + R_p }[/math]
and when d is a product of two distinct primes d = p q by
- [math]\displaystyle{ \left\vert A_{pq} \right\vert = \frac{1}{f(p)f(q)} X + R_{p,q} }[/math]
where X = |A| and f is a function with the property that 0 ≤ f(d) ≤ 1. Put
- [math]\displaystyle{ U(z) = \sum_{p \mid P(z)} f(p) . }[/math]
Then
- [math]\displaystyle{ S(A,P,z) \le \frac{X}{U(z)} + \frac{2}{U(z)} \sum_{p \mid P(z)} \left\vert R_p \right\vert + \frac{1}{U(z)^2} \sum_{p,q \mid P(z)} \left\vert R_{p,q} \right\vert . }[/math]
Applications
- The Hardy–Ramanujan theorem that the normal order of ω(n), the number of distinct prime factors of a number n, is log(log(n));
- Almost all integer polynomials (taken in order of height) are irreducible.
References
- Alina Carmen Cojocaru; M. Ram Murty. An introduction to sieve methods and their applications. London Mathematical Society Student Texts. 66. Cambridge University Press. pp. 47-62. ISBN 0-521-61275-6.
- George Greaves (2001). Sieves in number theory. Springer-Verlag. ISBN 3-540-41647-1.
- Heini Halberstam; H.E. Richert (1974). Sieve Methods. Academic Press. ISBN 0-12-318250-6.
- Christopher Hooley (1976). Applications of sieve methods to the theory of numbers. Cambridge University Press. pp. 21. ISBN 0-521-20915-3.