Ungula
In solid geometry, an ungula is a region of a solid of revolution, cut off by a plane oblique to its base.[1] A common instance is the spherical wedge. The term ungula refers to the hoof of a horse, an anatomical feature that defines a class of mammals called ungulates.
The volume of an ungula of a cylinder was calculated by Grégoire de Saint Vincent.[2] Two cylinders with equal radii and perpendicular axes intersect in four double ungulae.[3] The bicylinder formed by the intersection had been measured by Archimedes in The Method of Mechanical Theorems, but the manuscript was lost until 1906.
A historian of calculus described the role of the ungula in integral calculus:
- Grégoire himself was primarily concerned to illustrate by reference to the ungula that volumetric integration could be reduced, through the ductus in planum, to a consideration of geometric relations between the lies of plane figures. The ungula, however, proved a valuable source of inspiration for those who followed him, and who saw in it a means of representing and transforming integrals in many ingenious ways.[4]:146
Cylindrical ungula
A cylindrical ungula of base radius r and height h has volume
- [math]\displaystyle{ V = {2\over 3} r^2 h }[/math],.[5]
Its total surface area is
- [math]\displaystyle{ A = {1\over 2} \pi r^2 + {1\over 2} \pi r \sqrt{r^2 + h^2} + 2 r h }[/math],
the surface area of its curved sidewall is
- [math]\displaystyle{ A_s = 2 r h }[/math],
and the surface area of its top (slanted roof) is
- [math]\displaystyle{ A_t = {1\over 2} \pi r \sqrt{r^2 + h^2} }[/math].
Proof
Consider a cylinder [math]\displaystyle{ x^2 + y^2 = r^2 }[/math] bounded below by plane [math]\displaystyle{ z = 0 }[/math] and above by plane [math]\displaystyle{ z = k y }[/math] where k is the slope of the slanted roof:
- [math]\displaystyle{ k = {h \over r} }[/math].
Cutting up the volume into slices parallel to the y-axis, then a differential slice, shaped like a triangular prism, has volume
- [math]\displaystyle{ A(x) \, dx }[/math]
where
- [math]\displaystyle{ A(x) = {1\over 2} \sqrt{r^2 - x^2} \cdot k \sqrt{r^2 - x^2} = {1\over 2} k (r^2 - x^2) }[/math]
is the area of a right triangle whose vertices are, [math]\displaystyle{ (x, 0, 0) }[/math], [math]\displaystyle{ (x, \sqrt{r^2 - x^2}, 0) }[/math], and [math]\displaystyle{ (x, \sqrt{r^2 - x^2}, k \sqrt{r^2 - x^2}) }[/math], and whose base and height are thereby [math]\displaystyle{ \sqrt{r^2 - x^2} }[/math] and [math]\displaystyle{ k \sqrt{r^2 - x^2} }[/math], respectively. Then the volume of the whole cylindrical ungula is
- [math]\displaystyle{ V = \int_{-r}^r A(x) \, dx = \int_{-r}^r {1\over 2} k (r^2 - x^2) \, dx }[/math]
- [math]\displaystyle{ \qquad = {1\over 2} k \Big([r^2 x]_{-r}^r - \Big[{1\over 3} x^3\Big]_{-r}^r \Big) = {1\over 2} k (2 r^3 - {2\over 3} r^3) = {2 \over 3} k r^3 }[/math]
which equals
- [math]\displaystyle{ V = {2\over 3} r^2 h }[/math]
after substituting [math]\displaystyle{ r k = h }[/math].
A differential surface area of the curved side wall is
- [math]\displaystyle{ dA_s = k r (\sin \theta) \cdot r \, d\theta = k r^2 (\sin \theta) \, d\theta }[/math],
which area belongs to a nearly flat rectangle bounded by vertices [math]\displaystyle{ (r \cos \theta, r \sin \theta, 0) }[/math], [math]\displaystyle{ (r \cos \theta, r \sin \theta, k r \sin \theta) }[/math], [math]\displaystyle{ (r \cos (\theta + d\theta), r \sin (\theta + d\theta), 0) }[/math], and [math]\displaystyle{ (r \cos (\theta + d\theta), r \sin (\theta + d\theta), k r \sin (\theta + d\theta)) }[/math], and whose width and height are thereby [math]\displaystyle{ r \, d\theta }[/math] and (close enough to) [math]\displaystyle{ k r \sin \theta }[/math], respectively. Then the surface area of the wall is
- [math]\displaystyle{ A_s = \int_0^\pi dA_s = \int_0^\pi k r^2 (\sin \theta) \, d\theta = k r^2 \int_0^\pi \sin \theta \, d\theta }[/math]
where the integral yields [math]\displaystyle{ -[\cos \theta]_0^\pi = -[-1 - 1] = 2 }[/math], so that the area of the wall is
- [math]\displaystyle{ A_s = 2 k r^2 }[/math],
and substituting [math]\displaystyle{ r k = h }[/math] yields
- [math]\displaystyle{ A_s = 2 r h }[/math].
The base of the cylindrical ungula has the surface area of half a circle of radius r: [math]\displaystyle{ {1\over 2} \pi r^2 }[/math], and the slanted top of the said ungula is a half-ellipse with semi-minor axis of length r and semi-major axis of length [math]\displaystyle{ r \sqrt{1 + k^2} }[/math], so that its area is
- [math]\displaystyle{ A_t = {1\over 2} \pi r \cdot r \sqrt{1 + k^2} = {1\over 2} \pi r \sqrt{r^2 + (k r)^2} }[/math]
and substituting [math]\displaystyle{ k r = h }[/math] yields
- [math]\displaystyle{ A_t = {1\over 2} \pi r \sqrt{r^2 + h^2} }[/math]. ∎
Note how the surface area of the side wall is related to the volume: such surface area being [math]\displaystyle{ 2kr^2 }[/math], multiplying it by [math]\displaystyle{ dr }[/math] gives the volume of a differential half-shell, whose integral is [math]\displaystyle{ {2\over 3} k r^3 }[/math], the volume.
When the slope k equals 1 then such ungula is precisely one eighth of a bicylinder, whose volume is [math]\displaystyle{ {16\over 3} r^3 }[/math]. One eighth of this is [math]\displaystyle{ {2\over 3} r^3 }[/math].
Conical ungula
A conical ungula of height h, base radius r, and upper flat surface slope k (if the semicircular base is at the bottom, on the plane z = 0) has volume
- [math]\displaystyle{ V = {r^3 k H I \over 6} }[/math]
where
- [math]\displaystyle{ H = {1 \over {1\over h} - {1\over r k}} }[/math]
is the height of the cone from which the ungula has been cut out, and
- [math]\displaystyle{ I = \int_0^\pi {2 H + k r \sin \theta \over (H + k r \sin \theta)^2} \sin \theta \, d\theta }[/math].
The surface area of the curved sidewall is
- [math]\displaystyle{ A_s = {k r^2 \sqrt{r^2 + H^2} \over 2} I }[/math].
As a consistency check, consider what happens when the height of the cone goes to infinity, so that the cone becomes a cylinder in the limit:
- [math]\displaystyle{ \lim_{H\rightarrow \infty} \Big(I - {4\over H}\Big) = \lim_{H\rightarrow \infty} \Big({2 H \over H^2} \int_0^\pi \sin \theta \, d\theta - {4\over H} \Big) = 0 }[/math]
so that
- [math]\displaystyle{ \lim_{H\rightarrow \infty} V = {r^3 k H \over 6} \cdot {4\over H} = {2\over 3} k r^3 }[/math],
- [math]\displaystyle{ \lim_{H\rightarrow \infty} A_s = {k r^2 H \over 2} \cdot {4\over H} = 2 k r^2 }[/math], and
- [math]\displaystyle{ \lim_{H\rightarrow \infty} A_t = {1\over 2} \pi r^2 {\sqrt{1 + k^2} \over 1 + 0} = {1\over 2} \pi r^2 \sqrt{1 + k^2} = {1\over 2} \pi r \sqrt{r^2 + (r k)^2} }[/math],
which results agree with the cylindrical case.
Proof
Let a cone be described by
- [math]\displaystyle{ 1 - {\rho \over r} = {z \over H} }[/math]
where r and H are constants and z and ρ are variables, with
- [math]\displaystyle{ \rho = \sqrt{x^2 + y^2}, \qquad 0 \le \rho \le r }[/math]
and
- [math]\displaystyle{ x = \rho \cos \theta, \qquad y = \rho \sin \theta }[/math].
Let the cone be cut by a plane
- [math]\displaystyle{ z = k y = k \rho \sin \theta }[/math].
Substituting this z into the cone's equation, and solving for ρ yields
- [math]\displaystyle{ \rho_0 = {1 \over {1\over r} + {k \sin \theta \over H}} }[/math]
which for a given value of θ is the radial coordinate of the point common to both the plane and the cone that is farthest from the cone's axis along an angle θ from the x-axis. The cylindrical height coordinate of this point is
- [math]\displaystyle{ z_0 = H \Big(1 - {\rho_0 \over r}\Big) }[/math].
So along the direction of angle θ, a cross-section of the conical ungula looks like the triangle
- [math]\displaystyle{ (0,0,0) - (\rho_0 \cos \theta, \rho_0 \sin \theta, z_0) - (r \cos \theta, r \sin \theta, 0) }[/math].
Rotating this triangle by an angle [math]\displaystyle{ d\theta }[/math] about the z-axis yields another triangle with [math]\displaystyle{ \theta + d\theta }[/math], [math]\displaystyle{ \rho_1 }[/math], [math]\displaystyle{ z_1 }[/math] substituted for [math]\displaystyle{ \theta }[/math], [math]\displaystyle{ \rho_0 }[/math], and [math]\displaystyle{ z_0 }[/math] respectively, where [math]\displaystyle{ \rho_1 }[/math] and [math]\displaystyle{ z_1 }[/math] are functions of [math]\displaystyle{ \theta + d\theta }[/math] instead of [math]\displaystyle{ \theta }[/math]. Since [math]\displaystyle{ d\theta }[/math] is infinitesimal then [math]\displaystyle{ \rho_1 }[/math] and [math]\displaystyle{ z_1 }[/math] also vary infinitesimally from [math]\displaystyle{ \rho_0 }[/math] and [math]\displaystyle{ z_0 }[/math], so for purposes of considering the volume of the differential trapezoidal pyramid, they may be considered equal.
The differential trapezoidal pyramid has a trapezoidal base with a length at the base (of the cone) of [math]\displaystyle{ r d\theta }[/math], a length at the top of [math]\displaystyle{ \Big({H - z_0 \over H}\Big) r d\theta }[/math], and altitude [math]\displaystyle{ {z_0 \over H} \sqrt{r^2 + H^2} }[/math], so the trapezoid has area
- [math]\displaystyle{ A_T = {r\,d\theta + \Big({H - z_0 \over H}\Big) r\,d\theta \over 2} {z_0 \over H} \sqrt{r^2 + H^2} = r\,d\theta {(2 H - z_0) z_0 \over 2 H^2} \sqrt{r^2 + H^2} }[/math].
An altitude from the trapezoidal base to the point [math]\displaystyle{ (0,0,0) }[/math] has length differentially close to
- [math]\displaystyle{ {r H \over \sqrt{r^2 + H^2}} }[/math].
(This is an altitude of one of the side triangles of the trapezoidal pyramid.) The volume of the pyramid is one-third its base area times its altitudinal length, so the volume of the conical ungula is the integral of that:
- [math]\displaystyle{ V = \int_0^\pi {1\over 3} {r H\over \sqrt{r^2 + H^2}} {(2 H - z_0) z_0 \over 2 H^2} \sqrt{r^2 + H^2} r\,d\theta = \int_0^\pi {1\over 3} r^2 {(2 H - z_0) z_0 \over 2 H} d\theta = {r^2 k \over 6 H} \int_0^\pi (2 H - k y_0) y_0 \,d\theta }[/math]
where
- [math]\displaystyle{ y_0 = \rho_0 \sin \theta = {\sin \theta \over {1\over r} + {k \sin \theta \over H}} = {1 \over {1\over r \sin \theta} + {k\over H}} }[/math]
Substituting the right hand side into the integral and doing some algebraic manipulation yields the formula for volume to be proven.
For the sidewall:
- [math]\displaystyle{ A_s = \int_0^\pi A_T = \int_0^\pi {(2 H - z_0) z_0 \over 2 H^2} r \sqrt{r^2 + H^2}\,d\theta = {k r \sqrt{r^2 + H^2} \over 2 H^2} \int_0^\pi (2 H - z_0) y_0 \,d\theta }[/math]
and the integral on the rightmost-hand-side simplifies to [math]\displaystyle{ H^2 r I }[/math]. ∎
As a consistency check, consider what happens when k goes to infinity; then the conical ungula should become a semi-cone.
- [math]\displaystyle{ \lim_{k\rightarrow \infty} \Big(I - {\pi \over k r}\Big) = 0 }[/math]
- [math]\displaystyle{ \lim_{k\rightarrow \infty} V = {r^3 k H \over 6} \cdot {\pi \over k r} = {1\over 2} \Big({1\over 3} \pi r^2 H\Big) }[/math]
which is half of the volume of a cone.
- [math]\displaystyle{ \lim_{k\rightarrow \infty} A_s = {k r^2 \sqrt{r^2 + H^2} \over 2} \cdot {\pi \over k r} = {1\over 2} \pi r \sqrt{r^2 + H^2} }[/math]
which is half of the surface area of the curved wall of a cone.
Surface area of top part
When [math]\displaystyle{ k = H / r }[/math], the "top part" (i.e., the flat face that is not semicircular like the base) has a parabolic shape and its surface area is
- [math]\displaystyle{ A_t = {2\over 3} r \sqrt{r^2 + H^2} }[/math].
When [math]\displaystyle{ k \lt H / r }[/math] then the top part has an elliptic shape (i.e., it is less than one-half of an ellipse) and its surface area is
- [math]\displaystyle{ A_t = {1\over 2} \pi x_{max} (y_1 - y_m) \sqrt{1 + k^2} \Lambda }[/math]
where
- [math]\displaystyle{ x_{max} = \sqrt{{k^2 r^4 H^2 - k^4 r^6 \over (k^2 r^2 - H^2)^2} + r^2} }[/math],
- [math]\displaystyle{ y_1 = {1 \over {1 \over r} + {k \over H}} }[/math],
- [math]\displaystyle{ y_m = {k r^2 H \over k^2 r^2 - H^2} }[/math],
- [math]\displaystyle{ \Lambda = {\pi \over 4} - {1\over 2} \arcsin (1 - \lambda) - {1\over 4} \sin (2 \arcsin (1 - \lambda)) }[/math], and
- [math]\displaystyle{ \lambda = {y_1 \over y_1 - y_m} }[/math].
When [math]\displaystyle{ k \gt H / r }[/math] then the top part is a section of a hyperbola and its surface area is
- [math]\displaystyle{ A_t = \sqrt{1 + k^2} (2 C r - a J) }[/math]
where
- [math]\displaystyle{ C = {y_1 + y_2 \over 2} = y_m }[/math],
- [math]\displaystyle{ y_1 }[/math] is as above,
- [math]\displaystyle{ y_2 = {1 \over {k\over H} - {1\over r}} }[/math],
- [math]\displaystyle{ a = {r \over \sqrt{C^2 - \Delta^2}} }[/math],
- [math]\displaystyle{ \Delta = {y_2 - y_1 \over 2} }[/math],
- [math]\displaystyle{ J = {r\over a} B + {\Delta^2 \over 2} \log \Biggr|{{r\over a} + B\over {-r \over a} + B}\Biggr| }[/math],
where the logarithm is natural, and
- [math]\displaystyle{ B = \sqrt{\Delta^2 + {r^2 \over a^2}} }[/math].
See also
References
- ↑ Ungula at Webster Dictionary.org
- ↑ Gregory of St. Vincent (1647) Opus Geometricum quadraturae circuli et sectionum coni
- ↑ Blaise Pascal Lettre de Dettonville a Carcavi describes the onglet and double onglet, link from HathiTrust
- ↑ Margaret E. Baron (1969) The Origins of the Infinitesimal Calculus, Pergamon Press, republished 2014 by Elsevier, Google Books preview
- ↑ Solids - Volumes and Surfaces at The Engineering Toolbox
External links
- William Vogdes (1861) An Elementary Treatise on Measuration and Practical Geometry via Google Books
Original source: https://en.wikipedia.org/wiki/Ungula.
Read more |