Weierstrass–Enneper parameterization
In mathematics, the Weierstrass–Enneper parameterization of minimal surfaces is a classical piece of differential geometry.
Alfred Enneper and Karl Weierstrass studied minimal surfaces as far back as 1863.
Let [math]\displaystyle{ f }[/math] and [math]\displaystyle{ g }[/math] be functions on either the entire complex plane or the unit disk, where [math]\displaystyle{ g }[/math] is meromorphic and [math]\displaystyle{ f }[/math] is analytic, such that wherever [math]\displaystyle{ g }[/math] has a pole of order [math]\displaystyle{ m }[/math], [math]\displaystyle{ f }[/math] has a zero of order [math]\displaystyle{ 2m }[/math] (or equivalently, such that the product [math]\displaystyle{ f g^2 }[/math] is holomorphic), and let [math]\displaystyle{ c_1,c_2,c_3 }[/math] be constants. Then the surface with coordinates [math]\displaystyle{ (x_1, x_2, x_3) }[/math] is minimal, where the [math]\displaystyle{ x_k }[/math] are defined using the real part of a complex integral, as follows: [math]\displaystyle{ \begin{align} x_k(\zeta) &{}= \Re \left\{ \int_{0}^{\zeta} \varphi_{k}(z) \, dz \right\} + c_k , \qquad k=1,2,3 \\ \varphi_1 &{}= f(1-g^2)/2 \\ \varphi_2 &{}= \mathbf{i} f(1+g^2)/2 \\ \varphi_3 &{}= fg \end{align} }[/math]
The converse is also true: every nonplanar minimal surface defined over a simply connected domain can be given a parametrization of this type.[1]
For example, Enneper's surface has f(z) = 1, g(z) = zm.
Parametric surface of complex variables
The Weierstrass-Enneper model defines a minimal surface [math]\displaystyle{ X }[/math] ([math]\displaystyle{ \Reals^3 }[/math]) on a complex plane ([math]\displaystyle{ \Complex }[/math]). Let [math]\displaystyle{ \omega=u+v i }[/math] (the complex plane as the [math]\displaystyle{ uv }[/math] space), the Jacobian matrix of the surface can be written as a column of complex entries: [math]\displaystyle{ \mathbf{J} = \begin{bmatrix} \left( 1 - g^2(\omega) \right)f(\omega) \\ i\left( 1+ g^2(\omega) \right)f(\omega) \\ 2g(\omega) f(\omega) \end{bmatrix} }[/math] where [math]\displaystyle{ f(\omega) }[/math] and [math]\displaystyle{ g(\omega) }[/math] are holomorphic functions of [math]\displaystyle{ \omega }[/math].
The Jacobian [math]\displaystyle{ \mathbf{J} }[/math] represents the two orthogonal tangent vectors of the surface:[2] [math]\displaystyle{ \mathbf{X_u} = \begin{bmatrix} \operatorname{Re}\mathbf{J}_1 \\ \operatorname{Re}\mathbf{J}_2 \\ \operatorname{Re} \mathbf{J}_3 \end{bmatrix} \;\;\;\; \mathbf{X_v} = \begin{bmatrix} -\operatorname{Im}\mathbf{J}_1 \\ -\operatorname{Im}\mathbf{J}_2 \\ -\operatorname{Im} \mathbf{J}_3 \end{bmatrix} }[/math]
The surface normal is given by [math]\displaystyle{ \mathbf{\hat{n}} = \frac{\mathbf{X_u}\times \mathbf{X_v}}{|\mathbf{X_u}\times \mathbf{X_v}|} = \frac{1}{| g|^2+1} \begin{bmatrix} 2\operatorname{Re} g \\ 2\operatorname{Im} g \\ | g|^2-1 \end{bmatrix} }[/math]
The Jacobian [math]\displaystyle{ \mathbf{J} }[/math] leads to a number of important properties: [math]\displaystyle{ \mathbf{X_u} \cdot \mathbf{X_v}=0 }[/math], [math]\displaystyle{ \mathbf{X_u}^2 = \operatorname{Re}(\mathbf{J}^2) }[/math], [math]\displaystyle{ \mathbf{X_v}^2 = \operatorname{Im}(\mathbf{J}^2) }[/math], [math]\displaystyle{ \mathbf{X_{uu}} + \mathbf{X_{vv}}=0 }[/math]. The proofs can be found in Sharma's essay: The Weierstrass representation always gives a minimal surface.[3] The derivatives can be used to construct the first fundamental form matrix: [math]\displaystyle{ \begin{bmatrix} \mathbf{X_u} \cdot \mathbf{X_u} & \;\; \mathbf{X_u} \cdot \mathbf{X_v}\\ \mathbf{X_v} \cdot \mathbf{X_u} & \;\;\mathbf{X_v} \cdot \mathbf{X_v} \end{bmatrix}= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} }[/math]
and the second fundamental form matrix [math]\displaystyle{ \begin{bmatrix} \mathbf{X_{uu}} \cdot \mathbf{\hat{n}} & \;\; \mathbf{X_{uv}} \cdot \mathbf{\hat{n}}\\ \mathbf{X_{vu}} \cdot \mathbf{\hat{n}} & \;\; \mathbf{X_{vv}} \cdot \mathbf{\hat{n}} \end{bmatrix} }[/math]
Finally, a point [math]\displaystyle{ \omega_t }[/math] on the complex plane maps to a point [math]\displaystyle{ \mathbf{X} }[/math] on the minimal surface in [math]\displaystyle{ \R^3 }[/math] by [math]\displaystyle{ \mathbf{X}= \begin{bmatrix} \operatorname{Re} \int_{\omega_0}^{\omega_ t}\mathbf{J}_1 d\omega\\ \operatorname{Re} \int_{\omega_0}^{\omega_ t} \mathbf{J}_2 d\omega\\ \operatorname{Re} \int_{\omega_0}^{\omega_ t} \mathbf{J}_3 d\omega \end{bmatrix} }[/math] where [math]\displaystyle{ \omega_0 = 0 }[/math] for all minimal surfaces throughout this paper except for Costa's minimal surface where [math]\displaystyle{ \omega_0=(1+i)/2 }[/math].
Embedded minimal surfaces and examples
The classical examples of embedded complete minimal surfaces in [math]\displaystyle{ \mathbb{R}^3 }[/math] with finite topology include the plane, the catenoid, the helicoid, and the Costa's minimal surface. Costa's surface involves Weierstrass's elliptic function [math]\displaystyle{ \wp }[/math]:[4] [math]\displaystyle{ g(\omega)=\frac{A}{\wp' (\omega)} }[/math] [math]\displaystyle{ f(\omega)= \wp(\omega) }[/math] where [math]\displaystyle{ A }[/math] is a constant.[5]
Helicatenoid
Choosing the functions [math]\displaystyle{ f(\omega) = e^{-i \alpha}e^{\omega/A} }[/math] and [math]\displaystyle{ g(\omega) = e^{-\omega/A} }[/math], a one parameter family of minimal surfaces is obtained.
[math]\displaystyle{ \varphi_1 = e^{-i \alpha} \sinh\left(\frac{\omega}{A}\right) }[/math] [math]\displaystyle{ \varphi_2 = i e^{-i \alpha} \cosh\left(\frac{\omega}{A}\right) }[/math] [math]\displaystyle{ \varphi_3 = e^{-i \alpha} }[/math] [math]\displaystyle{ \mathbf{X}(\omega) = \operatorname{Re} \begin{bmatrix} e^{-i\alpha} A \cosh \left( \frac{\omega}{A} \right) \\ i e^{-i\alpha} A \sinh \left( \frac{\omega}{A} \right) \\ e^{-i\alpha} \omega \\ \end{bmatrix} = \cos(\alpha) \begin{bmatrix} A \cosh \left( \frac{\operatorname{Re}(\omega)}{A} \right) \cos \left( \frac{\operatorname{Im}(\omega)}{A} \right)\\ - A \cosh \left( \frac{\operatorname{Re}(\omega)}{A} \right) \sin \left( \frac{\operatorname{Im}(\omega)}{A} \right) \\ \operatorname{Re}(\omega) \\ \end{bmatrix} + \sin(\alpha) \begin{bmatrix} A \sinh \left( \frac{\operatorname{Re}(\omega)}{A} \right) \sin \left( \frac{\operatorname{Im}(\omega)}{A} \right)\\ A \sinh \left( \frac{\operatorname{Re}(\omega)}{A} \right) \cos \left( \frac{\operatorname{Im}(\omega)}{A} \right) \\ \operatorname{Im}(\omega) \\ \end{bmatrix} }[/math]
Choosing the parameters of the surface as [math]\displaystyle{ \omega = s + i(A \phi) }[/math]: [math]\displaystyle{ \mathbf{X}(s,\phi)= \cos(\alpha) \begin{bmatrix} A \cosh \left( \frac{s}{A} \right) \cos \left( \phi \right)\\ - A \cosh \left( \frac{s}{A} \right) \sin \left( \phi \right) \\ s \\ \end{bmatrix} + \sin(\alpha) \begin{bmatrix} A \sinh \left( \frac{s}{A} \right) \sin \left( \phi \right)\\ A \sinh \left( \frac{s}{A} \right) \cos \left( \phi \right) \\ A \phi \\ \end{bmatrix} }[/math]
At the extremes, the surface is a catenoid [math]\displaystyle{ (\alpha = 0) }[/math] or a helicoid [math]\displaystyle{ (\alpha = \pi/2) }[/math]. Otherwise, [math]\displaystyle{ \alpha }[/math] represents a mixing angle. The resulting surface, with domain chosen to prevent self-intersection, is a catenary rotated around the [math]\displaystyle{ \mathbf{X}_3 }[/math] axis in a helical fashion.
Lines of curvature
One can rewrite each element of second fundamental matrix as a function of [math]\displaystyle{ f }[/math] and [math]\displaystyle{ g }[/math], for example [math]\displaystyle{ \mathbf{X_{uu}} \cdot \mathbf{\hat{n}} = \frac{1}{|g|^2+1} \begin{bmatrix} \operatorname{Re} \left( ( 1- g^2 ) f' - 2gfg'\right) \\ \operatorname{Re} \left( ( 1+ g^2 ) f'i+ 2gfg'i \right) \\ \operatorname{Re} \left( 2gf' +2fg' \right) \\ \end{bmatrix} \cdot \begin{bmatrix} \operatorname{Re} \left( 2g \right) \\ \operatorname{Re} \left( -2gi \right) \\ \operatorname{Re} \left( |g|^2-1 \right) \\ \end{bmatrix} = -2\operatorname{Re} (fg') }[/math]
And consequently the second fundamental form matrix can be simplified as [math]\displaystyle{ \begin{bmatrix} -\operatorname{Re} f g' & \;\; \operatorname{Im} f g' \\ \operatorname{Im} f g' & \;\; \operatorname{Re} f g' \end{bmatrix} }[/math]
One of its eigenvectors is [math]\displaystyle{ \overline{\sqrt{ f g'} } }[/math] which represents the principal direction in the complex domain.[6] Therefore, the two principal directions in the [math]\displaystyle{ uv }[/math] space turn out to be [math]\displaystyle{ \phi = -\frac{1}{2} \operatorname{Arg}(f g') \pm k \pi /2 }[/math]
See also
- Associate family
- Bryant surface, found by an analogous parameterization in hyperbolic space
References
- ↑ Dierkes, U.; Hildebrandt, S.; Küster, A.; Wohlrab, O. (1992). Minimal surfaces. I. Springer. p. 108. ISBN 3-540-53169-6.
- ↑ Andersson, S.; Hyde, S. T.; Larsson, K.; Lidin, S. (1988). "Minimal Surfaces and Structures: From Inorganic and Metal Crystals to Cell Membranes and Biopolymers". Chem. Rev. 88 (1): 221–242. doi:10.1021/cr00083a011.
- ↑ Sharma, R. (2012). "The Weierstrass Representation always gives a minimal surface". arXiv:1208.5689 [math.DG].
- ↑ Lawden, D. F. (2011). Elliptic Functions and Applications. Applied Mathematical Sciences. 80. Berlin: Springer. ISBN 978-1-4419-3090-3.
- ↑ Abbena, E.; Salamon, S.; Gray, A. (2006). "Minimal Surfaces via Complex Variables". Modern Differential Geometry of Curves and Surfaces with Mathematica. Boca Raton: CRC Press. pp. 719–766. ISBN 1-58488-448-7.
- ↑ Hua, H.; Jia, T. (2018). "Wire cut of double-sided minimal surfaces". The Visual Computer 34 (6–8): 985–995. doi:10.1007/s00371-018-1548-0.
![]() | Original source: https://en.wikipedia.org/wiki/Weierstrass–Enneper parameterization.
Read more |