Wiener's Tauberian theorem

From HandWiki

In mathematical analysis, Wiener's tauberian theorem is any of several related results proved by Norbert Wiener in 1932.[1] They provide a necessary and sufficient condition under which any function in [math]\displaystyle{ L^1 }[/math] or [math]\displaystyle{ L^2 }[/math] can be approximated by linear combinations of translations of a given function.[2]

Informally, if the Fourier transform of a function [math]\displaystyle{ f }[/math] vanishes on a certain set [math]\displaystyle{ Z }[/math], the Fourier transform of any linear combination of translations of [math]\displaystyle{ f }[/math] also vanishes on [math]\displaystyle{ Z }[/math]. Therefore, the linear combinations of translations of [math]\displaystyle{ f }[/math] cannot approximate a function whose Fourier transform does not vanish on [math]\displaystyle{ Z }[/math].

Wiener's theorems make this precise, stating that linear combinations of translations of [math]\displaystyle{ f }[/math] are dense if and only if the zero set of the Fourier transform of [math]\displaystyle{ f }[/math] is empty (in the case of [math]\displaystyle{ L^1 }[/math]) or of Lebesgue measure zero (in the case of [math]\displaystyle{ L^2 }[/math]).

Gelfand reformulated Wiener's theorem in terms of commutative C*-algebras, when it states that the spectrum of the [math]\displaystyle{ L^1 }[/math] group ring [math]\displaystyle{ L^1(\mathbb{R}) }[/math] of the group [math]\displaystyle{ \mathbb{R} }[/math] of real numbers is the dual group of [math]\displaystyle{ \mathbb{R} }[/math]. A similar result is true when [math]\displaystyle{ \mathbb{R} }[/math] is replaced by any locally compact abelian group.

The condition in L1

Let [math]\displaystyle{ f\in L^1(\mathbb{R}) }[/math] be an integrable function. The span of translations [math]\displaystyle{ f_a(x) = f(x+a) }[/math] is dense in [math]\displaystyle{ L^1(\mathbb{R}) }[/math] if and only if the Fourier transform of [math]\displaystyle{ f }[/math] has no real zeros.

Tauberian reformulation

The following statement is equivalent to the previous result,[citation needed] and explains why Wiener's result is a Tauberian theorem:

Suppose the Fourier transform of [math]\displaystyle{ f\in L^1 }[/math] has no real zeros, and suppose the convolution [math]\displaystyle{ f*h }[/math] tends to zero at infinity for some [math]\displaystyle{ h\in L^\infty }[/math]. Then the convolution [math]\displaystyle{ g*h }[/math] tends to zero at infinity for any [math]\displaystyle{ g\in L^1 }[/math].

More generally, if

[math]\displaystyle{ \lim_{x \to \infty} (f*h)(x) = A \int f(x) \,dx }[/math]

for some [math]\displaystyle{ f\in L^1 }[/math] the Fourier transform of which has no real zeros, then also

[math]\displaystyle{ \lim_{x \to \infty} (g*h)(x) = A \int g(x) \,dx }[/math]

for any [math]\displaystyle{ g\in L^1 }[/math].

Discrete version

Wiener's theorem has a counterpart in [math]\displaystyle{ l^1(\mathbb{Z}) }[/math]: the span of the translations of [math]\displaystyle{ f\in l^1(\mathbb{Z}) }[/math] is dense if and only if the Fourier series

[math]\displaystyle{ \varphi(\theta) = \sum_{n \in \mathbb{Z}} f(n) e^{-in\theta} \, }[/math]

has no real zeros. The following statements are equivalent version of this result:

  • Suppose the Fourier series of [math]\displaystyle{ f\in l^1(\mathbb{Z}) }[/math] has no real zeros, and for some bounded sequence [math]\displaystyle{ h }[/math] the convolution [math]\displaystyle{ f*h }[/math]

tends to zero at infinity. Then [math]\displaystyle{ g*h }[/math] also tends to zero at infinity for any [math]\displaystyle{ g\in l^1(\mathbb{Z}) }[/math].

  • Let [math]\displaystyle{ \varphi }[/math] be a function on the unit circle with absolutely convergent Fourier series. Then [math]\displaystyle{ 1/\varphi }[/math] has absolutely convergent Fourier series

if and only if [math]\displaystyle{ \varphi }[/math] has no zeros.

Gelfand (1941a, 1941b) showed that this is equivalent to the following property of the Wiener algebra [math]\displaystyle{ A(\mathbb{T}) }[/math], which he proved using the theory of Banach algebras, thereby giving a new proof of Wiener's result:

  • The maximal ideals of [math]\displaystyle{ A(\mathbb{T}) }[/math] are all of the form
[math]\displaystyle{ M_x = \left\{ f \in A(\mathbb{T}) \mid f(x) = 0 \right\}, \quad x \in \mathbb{T}. }[/math]

The condition in L2

Let [math]\displaystyle{ f\in L^2(\mathbb{R}) }[/math] be a square-integrable function. The span of translations [math]\displaystyle{ f_a(x) = f(x+a) }[/math] is dense in [math]\displaystyle{ L^2(\mathbb{R}) }[/math] if and only if the real zeros of the Fourier transform of [math]\displaystyle{ f }[/math] form a set of zero Lebesgue measure.

The parallel statement in [math]\displaystyle{ l^2(\mathbb{Z}) }[/math] is as follows: the span of translations of a sequence [math]\displaystyle{ f\in l^2(\mathbb{Z}) }[/math] is dense if and only if the zero set of the Fourier series

[math]\displaystyle{ \varphi(\theta) = \sum_{n \in \mathbb{Z}} f(n) e^{-in\theta} }[/math]

has zero Lebesgue measure.

Notes

  1. See (Wiener 1932).
  2. see (Rudin 1991).

References

  • Gelfand, I. (1941a), "Normierte Ringe", Rec. Math. (Mat. Sbornik), Nouvelle Série 9 (51): 3–24 
  • Gelfand, I. (1941b), "Über absolut konvergente trigonometrische Reihen und Integrale", Rec. Math. (Mat. Sbornik), Nouvelle Série 9 (51): 51–66 
  • Rudin, W. (1991), Functional analysis, International Series in Pure and Applied Mathematics, New York: McGraw-Hill, Inc., ISBN 0-07-054236-8, https://archive.org/details/functionalanalys00rudi 
  • Wiener, N. (1932), "Tauberian Theorems", Annals of Mathematics 33 (1): 1–100, doi:10.2307/1968102 

External links