Truncated dodecahedral prism
From HandWiki
Revision as of 00:58, 10 May 2022 by imported>Raymond Straus (url)
Short description: Convex uniform polychoron
Truncated dodecahedral prism | |
---|---|
Schlegel diagram Decagonal prisms hidden | |
Type | Prismatic uniform polychoron |
Uniform index | 60 |
Schläfli symbol | t0,1,3{3,5,2} or t{3,5}×{} |
Coxeter-Dynkin | |
Cells | 34 total: 2 t0,1{5,3} 12 {}x{10} 20 {}x{3} |
Faces | 154 total: 40 {3} 90 {4} 24 {10} |
Edges | 240 |
Vertices | 120 |
Vertex figure | Isosceles-triangular pyramid |
Symmetry group | [5,3,2], order 240 |
Properties | convex |
In geometry, a truncated dodecahedral prism is a convex uniform polychoron (four-dimensional polytope).
It is one of 18 convex uniform polyhedral prisms created by using uniform prisms to connect pairs of Platonic solids or Archimedean solids in parallel hyperplanes.
Alternative names
- Truncated-dodecahedral dyadic prism (Norman W. Johnson)
- Tiddip (Jonathan Bowers: for truncated-dodecahedral prism)
- Truncated-dodecahedral hyperprism
See also
- Truncated 120-cell,
External links
- 6. Convex uniform prismatic polychora - Model 60, George Olshevsky.
- Klitzing, Richard. "4D uniform polytopes (polychora) x o3x5x - tiddip". https://bendwavy.org/klitzing/dimensions/polychora.htm.
Original source: https://en.wikipedia.org/wiki/Truncated dodecahedral prism.
Read more |