Pronormal subgroup

From HandWiki
Revision as of 22:11, 6 March 2023 by Jslovo (talk | contribs) (update)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, especially in the field of group theory, a pronormal subgroup is a subgroup that is embedded in a nice way. Pronormality is a simultaneous generalization of both normal subgroups and abnormal subgroups such as Sylow subgroups, (Doerk Hawkes). A subgroup is pronormal if each of its conjugates is conjugate to it already in the subgroup generated by it and its conjugate. That is, H is pronormal in G if for every g in G, there is some k in the subgroup generated by H and Hg such that Hk = Hg. (Here Hg denotes the conjugate subgroup gHg-1.)

Here are some relations with other subgroup properties:

References