Normal subgroup
Algebraic structure → Group theory Group theory |
---|
In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup)[1] is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup [math]\displaystyle{ N }[/math] of the group [math]\displaystyle{ G }[/math] is normal in [math]\displaystyle{ G }[/math] if and only if [math]\displaystyle{ gng^{-1} \in N }[/math] for all [math]\displaystyle{ g \in G }[/math] and [math]\displaystyle{ n \in N. }[/math] The usual notation for this relation is [math]\displaystyle{ N \triangleleft G. }[/math]
Normal subgroups are important because they (and only they) can be used to construct quotient groups of the given group. Furthermore, the normal subgroups of [math]\displaystyle{ G }[/math] are precisely the kernels of group homomorphisms with domain [math]\displaystyle{ G, }[/math] which means that they can be used to internally classify those homomorphisms.
Évariste Galois was the first to realize the importance of the existence of normal subgroups.[2]
Definitions
A subgroup [math]\displaystyle{ N }[/math] of a group [math]\displaystyle{ G }[/math] is called a normal subgroup of [math]\displaystyle{ G }[/math] if it is invariant under conjugation; that is, the conjugation of an element of [math]\displaystyle{ N }[/math] by an element of [math]\displaystyle{ G }[/math] is always in [math]\displaystyle{ N. }[/math][3] The usual notation for this relation is [math]\displaystyle{ N \triangleleft G. }[/math]
Equivalent conditions
For any subgroup [math]\displaystyle{ N }[/math] of [math]\displaystyle{ G, }[/math] the following conditions are equivalent to [math]\displaystyle{ N }[/math] being a normal subgroup of [math]\displaystyle{ G. }[/math] Therefore, any one of them may be taken as the definition.
- The image of conjugation of [math]\displaystyle{ N }[/math] by any element of [math]\displaystyle{ G }[/math] is a subset of [math]\displaystyle{ N, }[/math][4] i.e., [math]\displaystyle{ gNg^{-1}\subseteq N }[/math] for all [math]\displaystyle{ g\in G }[/math].
- The image of conjugation of [math]\displaystyle{ N }[/math] by any element of [math]\displaystyle{ G }[/math] is equal to [math]\displaystyle{ N, }[/math][4] i.e., [math]\displaystyle{ gNg^{-1}= N }[/math] for all [math]\displaystyle{ g\in G }[/math].
- For all [math]\displaystyle{ g \in G, }[/math] the left and right cosets [math]\displaystyle{ gN }[/math] and [math]\displaystyle{ Ng }[/math] are equal.[4]
- The sets of left and right cosets of [math]\displaystyle{ N }[/math] in [math]\displaystyle{ G }[/math] coincide.[4]
- Multiplication in [math]\displaystyle{ G }[/math] preserves the equivalence relation "is in the same left coset as". That is, for every [math]\displaystyle{ g,g',h,h'\in G }[/math] satisfying [math]\displaystyle{ g N = g' N }[/math] and [math]\displaystyle{ h N = h' N }[/math], we have [math]\displaystyle{ (g h) N = (g' h') N. }[/math]
- There exists a group on the set of left cosets of [math]\displaystyle{ N }[/math] where multiplication of any two left cosets [math]\displaystyle{ gN }[/math] and [math]\displaystyle{ hN }[/math] yields the left coset [math]\displaystyle{ (gh)N }[/math]. (This group is called the quotient group of [math]\displaystyle{ G }[/math] modulo [math]\displaystyle{ N }[/math], denoted [math]\displaystyle{ G/N }[/math].)
- [math]\displaystyle{ N }[/math] is a union of conjugacy classes of [math]\displaystyle{ G. }[/math][2]
- [math]\displaystyle{ N }[/math] is preserved by the inner automorphisms of [math]\displaystyle{ G. }[/math][5]
- There is some group homomorphism [math]\displaystyle{ G \to H }[/math] whose kernel is [math]\displaystyle{ N. }[/math][2]
- There exists a group homomorphism [math]\displaystyle{ \phi:G \to H }[/math] whose fibers form a group where the identity element is [math]\displaystyle{ N }[/math] and multiplication of any two fibers [math]\displaystyle{ \phi^{-1}(h_1) }[/math] and [math]\displaystyle{ \phi^{-1}(h_2) }[/math] yields the fiber [math]\displaystyle{ \phi^{-1}(h_1 h_2) }[/math]. (This group is the same group [math]\displaystyle{ G/N }[/math] mentioned above.)
- There is some congruence relation on [math]\displaystyle{ G }[/math] for which the equivalence class of the identity element is [math]\displaystyle{ N }[/math].
- For all [math]\displaystyle{ n\in N }[/math] and [math]\displaystyle{ g\in G, }[/math] the commutator [math]\displaystyle{ [n,g] = n^{-1} g^{-1} n g }[/math] is in [math]\displaystyle{ N. }[/math][citation needed]
- Any two elements commute modulo the normal subgroup membership relation. That is, for all [math]\displaystyle{ g, h \in G, }[/math] [math]\displaystyle{ g h \in N }[/math] if and only if [math]\displaystyle{ h g \in N. }[/math][citation needed]
Examples
For any group [math]\displaystyle{ G, }[/math] the trivial subgroup [math]\displaystyle{ \{ e \} }[/math] consisting of just the identity element of [math]\displaystyle{ G }[/math] is always a normal subgroup of [math]\displaystyle{ G. }[/math] Likewise, [math]\displaystyle{ G }[/math] itself is always a normal subgroup of [math]\displaystyle{ G. }[/math] (If these are the only normal subgroups, then [math]\displaystyle{ G }[/math] is said to be simple.)[6] Other named normal subgroups of an arbitrary group include the center of the group (the set of elements that commute with all other elements) and the commutator subgroup [math]\displaystyle{ [G,G]. }[/math][7][8] More generally, since conjugation is an isomorphism, any characteristic subgroup is a normal subgroup.[9]
If [math]\displaystyle{ G }[/math] is an abelian group then every subgroup [math]\displaystyle{ N }[/math] of [math]\displaystyle{ G }[/math] is normal, because [math]\displaystyle{ gN = \{gn\}_{n\in N} = \{ng\}_{n\in N} = Ng. }[/math] More generally, for any group [math]\displaystyle{ G }[/math], every subgroup of the center [math]\displaystyle{ Z(G) }[/math] of [math]\displaystyle{ G }[/math] is normal in [math]\displaystyle{ G }[/math]. (In the special case that [math]\displaystyle{ G }[/math] is abelian, the center is all of [math]\displaystyle{ G }[/math], hence the fact that all subgroups of an abelian group are normal.) A group that is not abelian but for which every subgroup is normal is called a Hamiltonian group.[10]
A concrete example of a normal subgroup is the subgroup [math]\displaystyle{ N = \{(1), (123), (132)\} }[/math] of the symmetric group [math]\displaystyle{ S_3, }[/math] consisting of the identity and both three-cycles. In particular, one can check that every coset of [math]\displaystyle{ N }[/math] is either equal to [math]\displaystyle{ N }[/math] itself or is equal to [math]\displaystyle{ (12)N = \{ (12), (23), (13)\}. }[/math] On the other hand, the subgroup [math]\displaystyle{ H = \{(1), (12)\} }[/math] is not normal in [math]\displaystyle{ S_3 }[/math] since [math]\displaystyle{ (123)H = \{(123), (13) \} \neq \{(123), (23) \} = H(123). }[/math][11] This illustrates the general fact that any subgroup [math]\displaystyle{ H \leq G }[/math] of index two is normal.
As an example of a normal subgroup within a matrix group, consider the general linear group [math]\displaystyle{ \mathrm{GL}_n(\mathbf{R}) }[/math] of all invertible [math]\displaystyle{ n\times n }[/math] matrices with real entries under the operation of matrix multiplication and its subgroup [math]\displaystyle{ \mathrm{SL}_n(\mathbf{R}) }[/math] of all [math]\displaystyle{ n\times n }[/math] matrices of determinant 1 (the special linear group). To see why the subgroup [math]\displaystyle{ \mathrm{SL}_n(\mathbf{R}) }[/math] is normal in [math]\displaystyle{ \mathrm{GL}_n(\mathbf{R}) }[/math], consider any matrix [math]\displaystyle{ X }[/math] in [math]\displaystyle{ \mathrm{SL}_n(\mathbf{R}) }[/math] and any invertible matrix [math]\displaystyle{ A }[/math]. Then using the two important identities [math]\displaystyle{ \det(AB)=\det(A)\det(B) }[/math] and [math]\displaystyle{ \det(A^{-1})=\det(A)^{-1} }[/math], one has that [math]\displaystyle{ \det(AXA^{-1}) = \det(A) \det(X) \det(A)^{-1} = \det(X) = 1 }[/math], and so [math]\displaystyle{ AXA^{-1} \in \mathrm{SL}_n(\mathbf{R}) }[/math] as well. This means [math]\displaystyle{ \mathrm{SL}_n(\mathbf{R}) }[/math] is closed under conjugation in [math]\displaystyle{ \mathrm{GL}_n(\mathbf{R}) }[/math], so it is a normal subgroup.[lower-alpha 1]
In the Rubik's Cube group, the subgroups consisting of operations which only affect the orientations of either the corner pieces or the edge pieces are normal.[12]
The translation group is a normal subgroup of the Euclidean group in any dimension.[13] This means: applying a rigid transformation, followed by a translation and then the inverse rigid transformation, has the same effect as a single translation. By contrast, the subgroup of all rotations about the origin is not a normal subgroup of the Euclidean group, as long as the dimension is at least 2: first translating, then rotating about the origin, and then translating back will typically not fix the origin and will therefore not have the same effect as a single rotation about the origin.
Properties
- If [math]\displaystyle{ H }[/math] is a normal subgroup of [math]\displaystyle{ G, }[/math] and [math]\displaystyle{ K }[/math] is a subgroup of [math]\displaystyle{ G }[/math] containing [math]\displaystyle{ H, }[/math] then [math]\displaystyle{ H }[/math] is a normal subgroup of [math]\displaystyle{ K. }[/math][14]
- A normal subgroup of a normal subgroup of a group need not be normal in the group. That is, normality is not a transitive relation. The smallest group exhibiting this phenomenon is the dihedral group of order 8.[15] However, a characteristic subgroup of a normal subgroup is normal.[16] A group in which normality is transitive is called a T-group.[17]
- The two groups [math]\displaystyle{ G }[/math] and [math]\displaystyle{ H }[/math] are normal subgroups of their direct product [math]\displaystyle{ G \times H. }[/math]
- If the group [math]\displaystyle{ G }[/math] is a semidirect product [math]\displaystyle{ G = N \rtimes H, }[/math] then [math]\displaystyle{ N }[/math] is normal in [math]\displaystyle{ G, }[/math] though [math]\displaystyle{ H }[/math] need not be normal in [math]\displaystyle{ G. }[/math]
- If [math]\displaystyle{ M }[/math] and [math]\displaystyle{ N }[/math] are normal subgroups of an additive group [math]\displaystyle{ G }[/math] such that [math]\displaystyle{ G = M + N }[/math] and [math]\displaystyle{ M \cap N = \{0\} }[/math], then [math]\displaystyle{ G = M \oplus N. }[/math][18]
- Normality is preserved under surjective homomorphisms;[19] that is, if [math]\displaystyle{ G \to H }[/math] is a surjective group homomorphism and [math]\displaystyle{ N }[/math] is normal in [math]\displaystyle{ G, }[/math] then the image [math]\displaystyle{ f(N) }[/math] is normal in [math]\displaystyle{ H. }[/math]
- Normality is preserved by taking inverse images;[19] that is, if [math]\displaystyle{ G \to H }[/math] is a group homomorphism and [math]\displaystyle{ N }[/math] is normal in [math]\displaystyle{ H, }[/math] then the inverse image [math]\displaystyle{ f^{-1}(N) }[/math] is normal in [math]\displaystyle{ G. }[/math]
- Normality is preserved on taking direct products;[20] that is, if [math]\displaystyle{ N_1 \triangleleft G_1 }[/math] and [math]\displaystyle{ N_2 \triangleleft G_2, }[/math] then [math]\displaystyle{ N_1 \times N_2\; \triangleleft \;G_1 \times G_2. }[/math]
- Every subgroup of index 2 is normal. More generally, a subgroup, [math]\displaystyle{ H, }[/math] of finite index, [math]\displaystyle{ n, }[/math] in [math]\displaystyle{ G }[/math] contains a subgroup, [math]\displaystyle{ K, }[/math] normal in [math]\displaystyle{ G }[/math] and of index dividing [math]\displaystyle{ n! }[/math] called the normal core. In particular, if [math]\displaystyle{ p }[/math] is the smallest prime dividing the order of [math]\displaystyle{ G, }[/math] then every subgroup of index [math]\displaystyle{ p }[/math] is normal.[21]
- The fact that normal subgroups of [math]\displaystyle{ G }[/math] are precisely the kernels of group homomorphisms defined on [math]\displaystyle{ G }[/math] accounts for some of the importance of normal subgroups; they are a way to internally classify all homomorphisms defined on a group. For example, a non-identity finite group is simple if and only if it is isomorphic to all of its non-identity homomorphic images,[22] a finite group is perfect if and only if it has no normal subgroups of prime index, and a group is imperfect if and only if the derived subgroup is not supplemented by any proper normal subgroup.
Lattice of normal subgroups
Given two normal subgroups, [math]\displaystyle{ N }[/math] and [math]\displaystyle{ M, }[/math] of [math]\displaystyle{ G, }[/math] their intersection [math]\displaystyle{ N\cap M }[/math]and their product [math]\displaystyle{ N M = \{n m : n \in N\; \text{ and }\; m \in M \} }[/math] are also normal subgroups of [math]\displaystyle{ G. }[/math]
The normal subgroups of [math]\displaystyle{ G }[/math] form a lattice under subset inclusion with least element, [math]\displaystyle{ \{ e \}, }[/math] and greatest element, [math]\displaystyle{ G. }[/math] The meet of two normal subgroups, [math]\displaystyle{ N }[/math] and [math]\displaystyle{ M, }[/math] in this lattice is their intersection and the join is their product.
The lattice is complete and modular.[20]
Normal subgroups, quotient groups and homomorphisms
If [math]\displaystyle{ N }[/math] is a normal subgroup, we can define a multiplication on cosets as follows: [math]\displaystyle{ \left(a_1 N\right) \left(a_2 N\right) := \left(a_1 a_2\right) N. }[/math] This relation defines a mapping [math]\displaystyle{ G/N\times G/N \to G/N. }[/math] To show that this mapping is well-defined, one needs to prove that the choice of representative elements [math]\displaystyle{ a_1, a_2 }[/math] does not affect the result. To this end, consider some other representative elements [math]\displaystyle{ a_1'\in a_1 N, a_2' \in a_2 N. }[/math] Then there are [math]\displaystyle{ n_1, n_2\in N }[/math] such that [math]\displaystyle{ a_1' = a_1 n_1, a_2' = a_2 n_2. }[/math] It follows that [math]\displaystyle{ a_1' a_2' N = a_1 n_1 a_2 n_2 N =a_1 a_2 n_1' n_2 N=a_1 a_2 N, }[/math]where we also used the fact that [math]\displaystyle{ N }[/math] is a normal subgroup, and therefore there is [math]\displaystyle{ n_1'\in N }[/math] such that [math]\displaystyle{ n_1 a_2 = a_2 n_1'. }[/math] This proves that this product is a well-defined mapping between cosets.
With this operation, the set of cosets is itself a group, called the quotient group and denoted with [math]\displaystyle{ G/N. }[/math] There is a natural homomorphism, [math]\displaystyle{ f : G \to G/N, }[/math] given by [math]\displaystyle{ f(a) = a N. }[/math] This homomorphism maps [math]\displaystyle{ N }[/math] into the identity element of [math]\displaystyle{ G/N, }[/math] which is the coset [math]\displaystyle{ e N = N, }[/math][23] that is, [math]\displaystyle{ \ker(f) = N. }[/math]
In general, a group homomorphism, [math]\displaystyle{ f : G \to H }[/math] sends subgroups of [math]\displaystyle{ G }[/math] to subgroups of [math]\displaystyle{ H. }[/math] Also, the preimage of any subgroup of [math]\displaystyle{ H }[/math] is a subgroup of [math]\displaystyle{ G. }[/math] We call the preimage of the trivial group [math]\displaystyle{ \{ e \} }[/math] in [math]\displaystyle{ H }[/math] the kernel of the homomorphism and denote it by [math]\displaystyle{ \ker f. }[/math] As it turns out, the kernel is always normal and the image of [math]\displaystyle{ G, f(G), }[/math] is always isomorphic to [math]\displaystyle{ G / \ker f }[/math] (the first isomorphism theorem).[24] In fact, this correspondence is a bijection between the set of all quotient groups of [math]\displaystyle{ G, G / N, }[/math] and the set of all homomorphic images of [math]\displaystyle{ G }[/math] (up to isomorphism).[25] It is also easy to see that the kernel of the quotient map, [math]\displaystyle{ f : G \to G/N, }[/math] is [math]\displaystyle{ N }[/math] itself, so the normal subgroups are precisely the kernels of homomorphisms with domain [math]\displaystyle{ G. }[/math][26]
See also
Operations taking subgroups to subgroups
- Normalizer
- Conjugate closure
- Normal core
Subgroup properties complementary (or opposite) to normality
- Malnormal subgroup
- Contranormal subgroup
- Abnormal subgroup
- Self-normalizing subgroup
Subgroup properties stronger than normality
- Characteristic subgroup
- Fully characteristic subgroup
Subgroup properties weaker than normality
- Subnormal subgroup
- Ascendant subgroup
- Descendant subgroup
- Quasinormal subgroup
- Seminormal subgroup
- Conjugate permutable subgroup
- Modular subgroup
- Pronormal subgroup
- Paranormal subgroup
- Polynormal subgroup
- C-normal subgroup
Related notions in algebra
- Ideal (ring theory)
- Semigroup ideal
Notes
- ↑ In other language: [math]\displaystyle{ \det }[/math] is a homomorphism from [math]\displaystyle{ \mathrm{GL}_n(\mathbf{R}) }[/math] to the multiplicative subgroup [math]\displaystyle{ \mathbf{R}^\times }[/math], and [math]\displaystyle{ \mathrm{SL}_n(\mathbf{R}) }[/math] is the kernel. Both arguments also work over the complex numbers, or indeed over an arbitrary field.
References
- ↑ Bradley 2010, p. 12.
- ↑ 2.0 2.1 2.2 Cantrell 2000, p. 160.
- ↑ Dummit & Foote 2004.
- ↑ 4.0 4.1 4.2 4.3 Hungerford 2003, p. 41.
- ↑ Fraleigh 2003, p. 141.
- ↑ Robinson 1996, p. 16.
- ↑ Hungerford 2003, p. 45.
- ↑ Hall 1999, p. 138.
- ↑ Hall 1999, p. 32.
- ↑ Hall 1999, p. 190.
- ↑ Judson 2020, Section 10.1.
- ↑ Bergvall et al. 2010, p. 96.
- ↑ Thurston 1997, p. 218.
- ↑ Hungerford 2003, p. 42.
- ↑ Robinson 1996, p. 17.
- ↑ Robinson 1996, p. 28.
- ↑ Robinson 1996, p. 402.
- ↑ Hungerford 2013, p. 290.
- ↑ 19.0 19.1 Hall 1999, p. 29.
- ↑ 20.0 20.1 Hungerford 2003, p. 46.
- ↑ Robinson 1996, p. 36.
- ↑ Dõmõsi & Nehaniv 2004, p. 7.
- ↑ Hungerford 2003, pp. 42–43.
- ↑ Hungerford 2003, p. 44.
- ↑ Robinson 1996, p. 20.
- ↑ Hall 1999, p. 27.
Bibliography
- Bergvall, Olof; Hynning, Elin; Hedberg, Mikael; Mickelin, Joel; Masawe, Patrick (16 May 2010). On Rubik's Cube. KTH. https://people.kth.se/~boij/kandexjobbVT11/Material/rubikscube.pdf.
- Cantrell, C.D. (2000). Modern Mathematical Methods for Physicists and Engineers. Cambridge University Press. ISBN 978-0-521-59180-5. https://archive.org/details/modernmathematic0000cant.
- Dõmõsi, Pál; Nehaniv, Chrystopher L. (2004). Algebraic Theory of Automata Networks. SIAM Monographs on Discrete Mathematics and Applications. SIAM.
- Dummit, David S.; Foote, Richard M. (2004). Abstract Algebra (3rd ed.). John Wiley & Sons. ISBN 0-471-43334-9.
- Fraleigh, John B. (2003). A First Course in Abstract Algebra (7th ed.). Addison-Wesley. ISBN 978-0-321-15608-2.
- Hall, Marshall (1999). The Theory of Groups. Providence: Chelsea Publishing. ISBN 978-0-8218-1967-8.
- Hungerford, Thomas (2003). Algebra. Graduate Texts in Mathematics. Springer.
- Hungerford, Thomas (2013). Abstract Algebra: An Introduction. Brooks/Cole Cengage Learning.
- Judson, Thomas W. (2020). Abstract Algebra: Theory and Applications. http://abstract.ups.edu/aata/aata.html.
- Robinson, Derek J. S. (1996). A Course in the Theory of Groups. Graduate Texts in Mathematics. 80 (2nd ed.). Springer-Verlag. ISBN 978-1-4612-6443-9.
- Thurston, William (1997). Levy, Silvio. ed. Three-dimensional geometry and topology, Vol. 1. Princeton Mathematical Series. Princeton University Press. ISBN 978-0-691-08304-9.
- Bradley, C. J. (2010). The mathematical theory of symmetry in solids : representation theory for point groups and space groups. Oxford New York: Clarendon Press. ISBN 978-0-19-958258-7. OCLC 859155300.
Further reading
- I. N. Herstein, Topics in algebra. Second edition. Xerox College Publishing, Lexington, Mass.-Toronto, Ont., 1975. xi+388 pp.
External links
- Weisstein, Eric W.. "normal subgroup". http://mathworld.wolfram.com/NormalSubgroup.html.
- Normal subgroup in Springer's Encyclopedia of Mathematics
- Robert Ash: Group Fundamentals in Abstract Algebra. The Basic Graduate Year
- Timothy Gowers, Normal subgroups and quotient groups
- John Baez, What's a Normal Subgroup?
Original source: https://en.wikipedia.org/wiki/Normal subgroup.
Read more |