Timeline of abelian varieties

From HandWiki
Revision as of 05:19, 27 June 2023 by Steve Marsio (talk | contribs) (change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: None

This is a timeline of the theory of abelian varieties in algebraic geometry, including elliptic curves.

Early history

Seventeenth century

Eighteenth century

  • 1718 Giulio Carlo Fagnano dei Toschi, studies the rectification of the lemniscate, addition results for elliptic integrals.[3]
  • 1736 Leonhard Euler writes on the pendulum equation without the small-angle approximation.[4]
  • 1738 Euler writes on curves of genus 1 considered by Fermat and Frenicle
  • 1750 Euler writes on elliptic integrals
  • 23 December 1751 – 27 January 1752: Birth of the theory of elliptic functions, according to later remarks of Jacobi, as Euler writes on Fagnano's work.[5]
  • 1775 John Landen publishes Landen's transformation,[6] an isogeny formula.
  • 1786 Adrien-Marie Legendre begins to write on elliptic integrals
  • 1797 Carl Friedrich Gauss discovers double periodicity of the lemniscate function[7]
  • 1799 Gauss finds the connection of the length of a lemniscate and a case of the arithmetic-geometric mean, giving a numerical method for a complete elliptic integral.[8]

Nineteenth century

Twentieth century

  • c.1910 The theory of Poincaré normal functions implies that the Picard variety and Albanese variety are isogenous.[17]
  • 1913 Torelli's theorem[18]
  • 1916 Gaetano Scorza[19] applies the term "abelian variety" to complex tori.
  • 1921 Solomon Lefschetz shows that any complex torus with Riemann matrix satisfying the necessary conditions can be embedded in some complex projective space using theta-functions
  • 1922 Louis Mordell proves Mordell's theorem: the rational points on an elliptic curve over the rational numbers form a finitely-generated abelian group
  • 1929 Arthur B. Coble, Algebraic Geometry and Theta Functions
  • 1939 Siegel modular forms[20]
  • c. 1940 André Weil defines "abelian variety"
  • 1952 Weil defines an intermediate Jacobian
  • Theorem of the cube
  • Selmer group
  • Michael Atiyah classifies holomorphic vector bundles on an elliptic curve
  • 1961 Goro Shimura and Yutaka Taniyama, Complex Multiplication of Abelian Varieties and its Applications to Number Theory
  • Néron model
  • Birch–Swinnerton–Dyer conjecture
  • Moduli space for abelian varieties
  • Duality of abelian varieties
  • c.1967 David Mumford develops a new theory of the equations defining abelian varieties
  • 1968 Serre–Tate theorem on good reduction extends the results of Max Deuring on elliptic curves to the abelian variety case.[21]
  • c. 1980 Mukai–Fourier transform: the Poincaré line bundle as Mukai–Fourier kernel induces an equivalence of the derived categories of coherent sheaves for an abelian variety and its dual.[22]
  • 1983 Takahiro Shiota proves Novikov's conjecture on the Schottky problem
  • 1985 Jean-Marc Fontaine shows that any positive-dimensional abelian variety over the rationals has bad reduction somewhere.[23]

Twenty-first century

Notes

  1. PDF
  2. Miscellaneous Diophantine Equations at MathPages
  3. Fagnano_Giulio biography
  4. E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (fourth edition 1937), p. 72.
  5. André Weil, Number Theory: An approach through history (1984), p. 1.
  6. Landen biography
  7. Chronology of the Life of Carl F. Gauss
  8. Semen Grigorʹevich Gindikin, Tales of Physicists and Mathematicians (1988 translation), p. 143.
  9. Dale Husemoller, Elliptic Curves.
  10. Richelot, Essai sur une méthode générale pour déterminer les valeurs des intégrales ultra-elliptiques, fondée sur des transformations remarquables de ces transcendantes, C. R. Acad. Sci. Paris. 2 (1836), 622-627; De transformatione integralium Abelianorum primi ordinis commentatio, J. Reine Angew. Math. 16 (1837), 221-341.
  11. Gopel biography
  12. "Rosenhain biography". http://www.gap-system.org/~history/Biographies/Rosenhain.html. 
  13. Theorie der Abel'schen Funktionen, J. Reine Angew. Math. 54 (1857), 115-180
  14. "Thomae biography". http://www.gap-system.org/~history/Biographies/Thomae.html. 
  15. Some Contemporary Problems with Origins in the Jugendtraum, Robert Langlands
  16. Über die Reduction einer bestimmten Klasse Abel'scher Integrale Ranges auf elliptische Integrale, Acta Mathematica 4, 392–414 (1884).
  17. PDF, p. 168.
  18. Ruggiero Torelli, Sulle varietà di Jacobi, Rend. della R. Acc. Nazionale dei Lincei (5), 22, 1913, 98–103.
  19. Gaetano Scorza, Intorno alla teoria generale delle matrici di Riemann e ad alcune sue applicazioni, Rend. del Circolo Mat. di Palermo 41 (1916)
  20. Carl Ludwig Siegel, Einführung in die Theorie der Modulfunktionen n-ten Grades, Mathematische Annalen 116 (1939), 617–657
  21. Jean-Pierre Serre and John Tate, Good Reduction of Abelian Varieties, Annals of Mathematics, Second Series, Vol. 88, No. 3 (Nov., 1968), pp. 492–517.
  22. Daniel Huybrechts, Fourier–Mukai transforms in algebraic geometry (2006), Ch. 9.
  23. Jean-Marc Fontaine, Il n'y a pas de variété abélienne sur Z, Inventiones Mathematicae (1985) no. 3, 515–538.