Engineering:KOMDIV-32

From HandWiki
Revision as of 19:46, 4 February 2024 by JMinHep (talk | contribs) (add)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
KOMDIV-32
General Info
Launched1999; 25 years ago (1999)
Designed byNIISI
Common manufacturer(s)
  • NIISI
  • Mikron
  • MVC Nizhny Novgorod
Performance
Max. CPU clock rate33 MHz to 125 MHz
Architecture and classification
Min. feature size0.25 µm to 0.5 µm
Instruction setMIPS I
Physical specifications
Cores
  • 1
History

The KOMDIV-32 (Russian: КОМДИВ-32) is a family of 32-bit microprocessors developed and manufactured by the Scientific Research Institute of System Development (NIISI) of the Russian Academy of Sciences.[1][2] The manufacturing plant of NIISI is located in Dubna on the grounds of the Kurchatov Institute.[3] The KOMDIV-32 processors are intended primarily for spacecraft applications and many of them are radiation hardened (rad-hard).

These microprocessors are compatible with MIPS R3000 and have an integrated MIPS R3010 compatible floating-point unit.[4]


Overview

Designation Production start (year) Process (nm) Clock rate (MHz) Remarks
Russian English
1В812 1V812 ? 500 33 [5]
1890ВМ1Т 1890VM1T 2000 500 50 rad-hard[4][6][7][8]
1890ВМ2Т 1890VM2T 2003 350 90 [4][6][7][8][9]
1990ВМ2Т 1990VM2T 2008 ? 350 66 rad-hard[4][6][7][10]
5890ВМ1Т 5890VM1Т 2009 500 33 rad-hard[4][6][7][8][11]
5890ВЕ1Т 5890VE1Т 2009 500 33 rad-hard[4][6][7][8][11][12]
1900ВМ2Т 1900VM2T 2012 350 66 rad-hard[4][6][7][8][11][12]
1904ВЕ1Т 1904VE1T 2016 350 40 [6][13]
1907ВМ014 1907VM014 2016 250 100 rad-hard[4][6][8]
1907ВМ038 1907VM038 2016 ? 250 125 rad-hard[4][6][10][14][15][16]
1907ВМ044 1907VM044 2016 ? 250 66 rad-hard[4][6][8][14][15][17]
1907ВМ056 1907VM056 2016 ? 250 100 rad-hard[4][6][8][14][15]
1907ВМ066 1907VM066 2016 ? 250 100 rad-hard[4][6][8][14][15]
1907ВК016 1907VK016 ? 250 100 rad-hard[4][8][14][15]

Details

1V812

  • 0.5 µm CMOS process, 3-layer metal
  • 108-pin ceramic Quad Flat Package (QFP)
  • 1.5 million transistors, 8KB L1 instruction cache, 8KB L1 data cache, compatible with IDT 79R3081E

1890VM1T

  • 0.5 µm CMOS process

1890VM2T

  • 0.35 µm CMOS process

1990VM2T

  • 0.35 µm silicon on insulator (SOI) CMOS process
  • 108-pin ceramic Quad Flat Package (QFP)
  • working temperature from -60 to 125 °C

5890VM1Т

  • 0.5 µm silicon on insulator (SOI) CMOS process
  • 108-pin ceramic Quad Flat Package (QFP)
  • cache (8KB each for data and instructions)
  • working temperature from -60 to 125 °C

5890VE1Т

  • 0.5 µm SOI CMOS process
  • 240-pin ceramic QFP
  • radiation tolerance to not less than 200 kRad, working temperature from -60 to 125 °C
  • System-on-a-chip (SoC) including PCI master / slave, 16 GPIO, 3 UART, 3 32-bit timers
  • cache (8KB each for data and instructions)
  • second-sourced by MVC Nizhny Novgorod under the name 1904VE1T (Russian: 1904ВЕ1Т) with a clock rate of 40 MHz

1900VM2T

  • development name Rezerv-32
  • 0.35 µm SOI CMOS process
  • 108-pin ceramic QFP
  • radiation tolerance to not less than 200 kRad, working temperature from -60 to 125 °C
  • triple modular redundancy on block level with self-healing
  • both registers and cache (4KB each for data and instructions) are implemented as dual interlocked storage cells (DICE)

1907VM014

  • 0.25 µm SOI CMOS process; manufacturing to be moved to Mikron
  • 256-pin ceramic QFP
  • production planned for 2016 (previously this device was planned to go into production in 2014 under the name 1907VE1T or 1907VM1T)[12]
  • radiation tolerance to not less than 200 kRad
  • SoC including SpaceWire, GOST R 52070-2003 (Russian version of MIL-STD-1553), SPI, 32 GPIO, 2 UART, 3 timers, JTAG
  • cache (8KB each for data and instructions)

1907VM038

  • development name Skhema-10
  • 0.25 µm SOI CMOS process; manufacturing to be moved to Mikron
  • 675-pin ceramic BGA
  • SoC including SpaceWire, GOST R 52070-2003 (MIL-STD-1553), RapidIO, SPI, I²C, 16 GPIO, 2 UART, 3 32-bit timers, JTAG, DSP (same command set as DSP in 1890VM7Ya)
  • DDR2 SDRAM controller with ECC
  • cache (8KB each for data and instructions)
  • working temperature from -60 to 125 °C

1907VM044

  • development name Obrabotka-10
  • 0.25 µm SOI CMOS process; manufactured by Mikron
  • 256-pin ceramic QFP
  • SoC including SpaceWire, GOST R 52070-2003 (MIL-STD-1553), SPI, 32 GPIO, 2 UART, 3 timers, JTAG
  • radiation tolerance to not less than 200 kRad
  • triple modular redundancy in processor core
  • both registers and cache (4KB each for data and instructions) are implemented as dual interlocked storage cells (DICE) with 1 parity bit per byte for cache and Hamming code for registers
  • SECDED for external memory
  • working temperature from -60 to 125 °C

1907VM056

  • development name Skhema-23
  • 0.25 µm SOI CMOS process; manufactured by Mikron
  • 407-pin ceramic PGA
  • SoC including 8-channel SpaceWire, GOST R 52070-2003 (MIL-STD-1553), SPI, I²C, CAN bus, 32 GPIO, 2 UART, 3 timers, JTAG
  • cache (8KB each for data and instructions)

1907VM066

  • development name Obrabotka-26
  • 0.25 µm silicon on insulator (SOI) CMOS process; manufactured by Mikron
  • 407-pin ceramic PGA
  • SoC including 4-channel SpaceWire, GOST R 52070-2003 (MIL-STD-1553), SPI, I²C, RapidIO, GPIO, 2 UART, 3 timers, JTAG, PCI, co-processor for image processing
  • cache (8KB each for data and instructions)

1907VK016

See also

  • KOMDIV-64, 64-bit MIPS processors developed by NIISI
  • Mongoose-V, a 32-bit MIPS processor for spacecraft applications developed for NASA
  • Soviet integrated circuit designation

References

  1. "Отделение разработки вычислительных систем" (in Russian). NIISI. https://www.niisi.ru/orvs.htm. Retrieved 9 September 2016. 
  2. "First Russian MIPS-Compatible Microprocessor". 22 December 2007. http://dailyrumors.blogspot.com/2007/12/first-russian-mips-compatible.html. Retrieved 6 September 2016. 
  3. Шунков, Валерий (28 March 2014). "Российская микроэлектроника для космоса: кто и что производит" (in Russian). Geektimes. https://geektimes.ru/post/254138/. Retrieved 8 April 2017. 
  4. 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 "Разработка СБИС - Развитие микропроцессоров с архитектурой КОМДИВ" (in Russian). NIISI. https://www.niisi.ru/devel.htm. Retrieved 6 September 2016. 
  5. "ОДНОКРИСТАЛЬНЫЙ МИКРОПРОЦЕССОР С АРХИТЕКТУРОЙ MIPS 1B812" (in Russian). NIISI. https://www.niisi.ru/o/1b578omp_short.doc. Retrieved 7 September 2016. 
  6. 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 6.11 "Изделия отечественного производства" (in Russian). AO "ENPO SPELS". http://www.spels.ru/index.php?option=com_easytablepro&view=easytable&id=13. Retrieved 1 September 2016. 
  7. 7.0 7.1 7.2 7.3 7.4 7.5 "Микросхемы вычислительных средств, включая микропроцессоры, микроЭВМ, цифровые процессоры обработки сигналов и контроллеры" (in ru). Promelektronika VPK. http://promvpk.ru/Catalog/Index/51a26afb6d0fad80e40359fc. Retrieved 25 October 2017. 
  8. 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 "Перспективные ЭВМ семейства БАГЕТ" (in ru). AO KB "Korund-M". 2017. http://nesmelov.com/images/portfolio/polygraphy/korund-m.pdf. 
  9. "1890ВМ2Т" (in Russian). NIISI. https://www.niisi.ru/1810BM2T.pdf. Retrieved 9 September 2016. 
  10. 10.0 10.1 Костарев, Иван Николаевич (28 January 2017). "Методика обеспечения сбоеустойчивости ПЛИС для ракетно-космического применения" (in Russian). Moscow Institute of Electronics and Mathematics. http://statref.ru/ref_qaspolotryfs.html. Retrieved 11 February 2020. 
  11. 11.0 11.1 11.2 Osipenko, Pavel Nikolaevich (12 October 2011). "Аспекты радиационной стойкости интегральных микросхем" (in Russian). NIISI. http://cad2011.mephi.ru/downloads/Osipenko_Radiation_2011.pdf. Retrieved 7 September 2016. 
  12. 12.0 12.1 12.2 Osipenko, Pavel Nikolaevich (25 May 2012). "ИЗДЕЛИЯ НАУЧНО-ИССЛЕДОВАТЕЛЬСКОГО ИНСТИТУТА СИСТЕМНЫХ ИССЛЕДОВАНИЙ РАН ДЛЯ АЭРОКОСМИЧЕСКИХ ПРИЛОЖЕНИЙ" (in Russian). Tarusa. pp. 139–148. http://www.iki.rssi.ru/books/2013mal_apparati.pdf. Retrieved 7 September 2016. 
  13. "Микропроцессоры и микроконтроллеры" (in Russian). MVC. 2014. http://mvc-nn.ru/%d0%bf%d1%80%d0%be%d0%b4%d1%83%d0%ba%d1%86%d0%b8%d1%8f/%d0%bc%d0%b8%d0%ba%d1%80%d0%be%d0%bf%d1%80%d0%be%d1%86%d0%b5%d1%81%d1%81%d0%be%d1%80%d1%8b-%d0%b8-%d0%bc%d0%b8%d0%ba%d1%80%d0%be%d0%ba%d0%be%d0%bd%d1%82%d1%80%d0%be%d0%bb%d0%bb%d0%b5%d1%80%d1%8b/. Retrieved 29 March 2018. 
  14. 14.0 14.1 14.2 14.3 14.4 Serdin, O.V. (2017). "The special radiation-hardened processors for new highly informative experiments in space". Journal of Physics 798 (1): 012010. doi:10.1088/1742-6596/798/1/012010. Bibcode2017JPhCS.798a2010S. 
  15. 15.0 15.1 15.2 15.3 15.4 Serdin, O.V. (13 October 2016). "The special radiation-hardened processors for new highly informative experiments in space". http://indico.cfr.mephi.ru/event/4/session/29/contribution/19/material/slides/0.pdf. Retrieved 5 April 2017. 
  16. "Микросхема 1907ВМ038" (in Russian). NIISI. https://www.niisi.ru/1907BM038.pdf. Retrieved 28 March 2017. 
  17. "Микросхема 1907ВМ044" (in Russian). NIISI. https://www.niisi.ru/1907BM044.pdf. Retrieved 3 April 2017.