Medicine:N-localizer

From HandWiki
Revision as of 00:39, 5 February 2024 by HamTop (talk | contribs) (fixing)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
N-localizer
Photograph of Stereotactic Frame With 3 N-localizers.jpg
Three N-localizers attached to a stereotactic frame.[1]
Specialtyneurosurgery, radiation oncology
Interventionstereotactic surgery, radiosurgery
Inventor(s)Russell A. Brown[2]

The N-localizer[3] is a device that enables guidance of stereotactic surgery or radiosurgery using tomographic images that are obtained via computed tomography (CT),[4] magnetic resonance imaging (MRI),[5] or positron emission tomography (PET).[6] The N-localizer comprises a diagonal rod that spans two vertical rods to form an N-shape (Figure 1) and permits calculation of the point where a tomographic image plane intersects the diagonal rod. Attaching three N-localizers to a stereotactic instrument allows calculation of three points where a tomographic image plane intersects three diagonal rods (Figure 2). These points determine the spatial orientation of the tomographic image plane relative to the stereotactic frame.[7]

The N-localizer is integrated with the Brown-Roberts-Wells (BRW),[8] Kelly-Goerss,[9] Leksell,[10] Cosman-Roberts-Wells (CRW),[11] Micromar-ETM03B, FiMe-BlueFrame, Macom, and Adeor-Zeppelin[12] stereotactic frames and with the Gamma Knife radiosurgery system.[13]

An alternative to the N-localizer is the Sturm-Pastyr localizer that comprises three rods wherein two diagonal rods form a V-shape and a third, vertical rod is positioned midway between the two diagonal rods (Figure 3).[14] The Sturm-Pastyr localizer is integrated with the Riechert-Mundinger and Zamorano-Dujovny stereotactic frames.[15]

Compared to the N-localizer, the Sturm-Pastyr localizer is less accurate and necessitates more elaborate calculations to determine the spatial orientation of the tomographic image plane relative to the stereotactic frame.[16] In contrast to the N-localizer that does not require specification of the pixel size in a tomographic image,[17] the Sturm-Pastyr localizer requires precise specification of the pixel size.[18]

Research conducted four decades after the introduction of the N-localizer[19] and Sturm-Pastyr localizer[20] has revealed computational techniques that improve the accuracy of both localizers.

Figures

References

  1. Arle, J (2009). "Development of a Classic: The Todd-Wells Apparatus, the BRW, and the CRW Stereotactic Frames". in Lozano, AM; Gildenberg, PL; Tasker, RR. Textbook of Stereotactic and Functional Neurosurgery. Berlin: Springer-Verlag. pp. 456–460. doi:10.1007/978-3-540-69960-6. ISBN 978-3-540-69959-0. 
  2. "System Using Computed Tomography as for Selective Body Treatment". U.S. Patent 4608977. 1986. 
  3. Galloway, RL Jr. (2015). "Introduction and Historical Perspectives on Image-Guided Surgery". in Golby, AJ. Image-Guided Neurosurgery. Amsterdam: Elsevier. pp. 2–4. doi:10.1016/B978-0-12-800870-6.00001-7. ISBN 978-0-12-800870-6. 
  4. "CT-guided stereotactic neurosurgery: experience in 24 cases with a new stereotactic system". Journal of Neurology, Neurosurgery & Psychiatry 47 (1): 9–16. 1984. doi:10.1136/jnnp.47.1.9. PMID 6363629. 
  5. "Brown-Roberts-Wells stereotactic frame modifications to accomplish magnetic resonance imaging guidance in three planes". Applied Neurophysiology 50 (1–6): 143–152. 1987. doi:10.1159/000100700. PMID 3329837. 
  6. "Positron emission tomography imaging-directed stereotactic neurosurgery". Stereotactic and Functional Neurosurgery 58 (1–4): 134–140. 1992. doi:10.1159/000098986. PMID 1439330. 
  7. Gildenberg, PL; Krauss, JK (2009). "History of Stereotactic Surgery". in Lozano, AM; Gildenberg, PL; Tasker, RR. Textbook of Stereotactic and Functional Neurosurgery. Berlin: Springer-Verlag. pp. 23. doi:10.1007/978-3-540-69960-6. ISBN 978-3-540-69959-0. 
  8. "Preliminary experience with Brown-Roberts-Wells (BRW) computerized tomography stereotaxic guidance system". Journal of Neurosurgery 59 (2): 217–222. 1983. doi:10.3171/jns.1983.59.2.0217. PMID 6345727. 
  9. "A computed tomography stereotactic adaptation system". Neurosurgery 10 (3): 375–379. 1982. doi:10.1227/00006123-198203000-00014. PMID 7041006. 
  10. "Stereotaxis and nuclear magnetic resonance". Journal of Neurology, Neurosurgery & Psychiatry 48 (1): 14–18. 1985. doi:10.1136/jnnp.48.1.14. PMID 3882889. 
  11. "Initial experience related to the Cosman-Roberts-Wells stereotactic instrument. Technical note". Journal of Neurosurgery 72 (1): 145–8. 1990. doi:10.3171/jns.1990.72.1.0145. PMID 2403588. 
  12. "Coordinate systems for navigating stereotactic space: how not to get lost". Cureus 12 (6): e8578. 2020. doi:10.7759/cureus.8578. PMID 32670714. 
  13. Tse, VCK; Kalani, MYS; Adler, JR (2015). "Techniques of Stereotactic Localization". in Chin, LS; Regine, WF. Principles and Practice of Stereotactic Radiosurgery. New York: Springer. pp. 25–32. doi:10.1007/978-1-4614-8363-2. ISBN 978-1-4614-8362-5. 
  14. "Stereotactic computer tomography with a modified Riechert-Mundinger device as the basis for integrated stereotactic neuroradiological investigations". Acta Neurochirurgica 68 (1–2): 11–17. 1983. doi:10.1007/BF01406197. PMID 6344559. 
  15. Krauss, JK (2009). "The Riechert/Mundinger Stereotactic Apparatus". in Lozano, AM; Gildenberg, PL; Tasker, RR. Textbook of Stereotactic and Functional Neurosurgery. Berlin: Springer-Verlag. pp. 487–493. doi:10.1007/978-3-540-69960-6. ISBN 978-3-540-69959-0. 
  16. "Comparative accuracies of the N-localizer and Sturm-Pastyr localizer in the presence of image noise". Cureus 12 (7): e9137. 2020. doi:10.7759/cureus.9137. PMID 32685325. 
  17. "A CT-based computerized treatment planning system for I-125 stereotactic brain implants". International Journal of Radiation Oncology, Biology, Physics 18 (2): 445–454. 1990. doi:10.1016/0360-3016(90)90114-Y. PMID 2406230. 
  18. "An algorithm for stereotactic localization by computed tomography or magnetic resonance imaging". Physics in Medicine and Biology 46 (1): N1–N7. 2001. doi:10.1088/0031-9155/46/1/401. PMID 11197682. 
  19. "Monte Carlo simulation of errors for N-localizer systems in stereotactic neurosurgery: novel proposals for improvements". Cureus 13 (2): e13393. 2021. doi:10.7759/cureus.13393. PMID 33758694. 
  20. "Improved accuracy for the Sturm-Pastyr localizer in the presence of image noise". Cureus 13 (9): e17905. 2021. doi:10.7759/cureus.17905. PMID 34660100. 

Further reading

  • Saleh, H; Kassas, B (2014). "Developing Stereotactic Frames for Cranial Treatment". in Benedict, SH; Schlesinger, DJ; Goetsche, SJ et al.. Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy. Boca Raton: CRC Press. pp. 156–159. doi:10.1201/b16776. ISBN 978-1-4398-4198-3.