Physics:Kagome metal
In solid-state physics, the kagome metal or kagome magnet is a type of ferromagnetic quantum material. The atomic lattice in a kagome magnet has layered overlapping triangles and large hexagonal voids, akin to the kagome pattern in traditional Japanese basket-weaving.[1][2][3][4] This geometry induces a flat electronic band structure with Dirac crossings, in which the low-energy electron dynamics correlate strongly.[5] Electrons in a kagome metal experience a "three-dimensional cousin of the quantum Hall effect": magnetic effects require electrons to flow around the kagome triangles, akin to superconductivity.[5] This phenomenon occurs in many materials at low temperatures and high external field, but, unlike superconductivity, materials are known in which the effect remains under standard conditions.[5][6]
The first room-temperature, vanishing-external-field kagome magnet discovered was the intermetallic Fe
3Sn
2, as shown in 2011.[7] Many others have since been found. Kagome magnets occur in a variety of crystal and magnetic structures, generally featuring a 3d-transition-metal kagome lattice with in-plane period ~5.5 Å. Examples include antiferromagnet Mn
3Sn, paramagnet CoSn, ferrimagnet TbMn
6Sn
6, hard ferromagnet (and Weyl semimetal) Co
3Sn
2S
2, and soft ferromagnet Fe
3Sn
2. Until 2019, all known kagome materials contained the heavy element tin, which has a strong spin–orbit coupling, but potential kagome materials under study ((As of 2019)) included magnetically doped Weyl-semimetal Co
2MnGa,[8] and the class AV
3Sb
5 (A = Cs, Rb, K).[9] Although most research on kagome magnets has been performed on Fe3Sn2, it has since been discovered that FeSn in fact exhibits a structure much closer to the ideal kagome lattice.[10]
A kagome lattice harbors massive Dirac fermions, Berry curvature, band gaps, and spin–orbit activity, all of which are conducive to the Hall Effect and zero-energy-loss electric currents.[6][11][12] These behaviors are promising for the development of technologies in quantum computing, spin superconductors, and low power electronics.[5][6] CsV
3Sb
5 in particular exhibits numerous exotic properties, including superconductivity,[13] topological states, and more.[vague][14][15][16][17] Magnetic skyrmionic bubbles have been found in Kagome metals over a wide temperature range. For example, they were observed in Fe
3Sn
2 at ~200-600 K using LTEM but with high critical field ~0.8 T.[18]
See also
- Herbertsmithite, a natural kagome magnet
- Magnon
References
- ↑ Yin Jia-Xin (2018). "Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet". Nature 562 (7725): 91–95. doi:10.1038/s41586-018-0502-7. PMID 30209398. Bibcode: 2018Natur.562...91Y.
- ↑ Li Yangmu (2019). "Magnetic-Field Control of Topological Electronic Response near Room Temperature in Correlated Kagome Magnets". Physical Review Letters 123 (19): 196604. doi:10.1103/PhysRevLett.123.196604. PMID 31765205. Bibcode: 2019PhRvL.123s6604L.
- ↑ Khadka, Durga (2020). "Anomalous Hall and Nernst effects in epitaxial films of topological kagome magnet Fe3Sn2". Physical Review Materials 4 (8): 084203. doi:10.1103/PhysRevMaterials.4.084203. Bibcode: 2020PhRvM...4h4203K.
- ↑ Yin Jia-Xin (2021). "Probing topological quantum matter with scanning tunnelling microscopy". Nature Reviews Physics 3 (4): 249–263. doi:10.1038/s42254-021-00293-7. Bibcode: 2021NatRP...3..249Y.
- ↑ 5.0 5.1 5.2 5.3 Jennifer Chu (March 19, 2018), "Physicists discover new quantum electronic material", MIT News (Massachusetts Institute of Technology), https://news.mit.edu/2018/physicists-discover-new-quantum-electronic-material-0319
- ↑ 6.0 6.1 6.2 "The Electronic Structure of a "Kagome" Material" (in en-US). 2018-06-15. https://als.lbl.gov/the-electronic-structure-of-a-kagome-material/.
- ↑ Kida T (2011). "The giant anomalous Hall effect in the ferromagnet Fe3Sn2—a frustrated kagome metal". J. Phys.: Condens. Matter 23 (11): 112205. doi:10.1088/0953-8984/23/11/112205. PMID 21358031. Bibcode: 2011JPCM...23k2205K.
- ↑ "The best of two worlds: Magnetism and Weyl semimetals" (in en). September 2019. https://phys.org/news/2019-09-worlds-magnetism-weyl-semimetals.html.
- ↑ Ortiz, Brenden R.; Gomes, Lídia C.; Morey, Jennifer R.; Winiarski, Michal; Bordelon, Mitchell; Mangum, John S.; Oswald, Iain W. H.; Rodriguez-Rivera, Jose A. et al. (2019-09-16). "New kagome prototype materials: discovery of KV3Sb5 and CsV3Sb5". Physical Review Materials 3 (9): 094407. doi:10.1103/PhysRevMaterials.3.094407.
- ↑ "MIT researchers realize "ideal" kagome metal electronic structure". 12 December 2019. http://news.mit.edu/2019/mit-researchers-realize-ideal-kagome-metal-electronic-structure-1212.
- ↑ "A new 'spin' on kagome lattices" (in en). https://phys.org/news/2018-12-kagome-lattices.html.
- ↑ Ye, Linda; Chan Mun K.; McDonald, Ross D.; Graf, David; Kang Mingu; Liu Junwei; Suzuki Takehito; Comin, Riccardo et al. (2019-10-25). "de Haas-van Alphen effect of correlated Dirac states in kagome metal Fe3Sn2" (in en). Nature Communications 10 (1): 4870. doi:10.1038/s41467-019-12822-1. ISSN 2041-1723. PMID 31653866. Bibcode: 2019NatCo..10.4870Y.
- ↑ Ortiz, Brenden R.; Teicher, Samuel M. L.; Hu Yong; Zuo, Julia L.; Sarte, Paul M.; Schueller, Emily C.; Abeykoon, A. M. Milinda; Krogstad, Matthew J. et al. (2020-12-10). "CsV3Sb5: A Z2 Topological Kagome Metal with a Superconducting Ground State". Physical Review Letters 125 (24): 247002. doi:10.1103/PhysRevLett.125.247002. PMID 33412053. Bibcode: 2020PhRvL.125x7002O. https://link.aps.org/doi/10.1103/PhysRevLett.125.247002.
- ↑ Zhao He; Li Hong; Ortiz, Brenden R.; Teicher, Samuel M. L.; Park, Takamori; Ye Mengxing; Wang Ziqiang; Balents, Leon et al. (November 2021). "Cascade of correlated electron states in the kagome superconductor CsV3Sb5" (in en). Nature 599 (7884): 216–221. doi:10.1038/s41586-021-03946-w. ISSN 1476-4687. PMID 34587622. Bibcode: 2021Natur.599..216Z. https://www.nature.com/articles/s41586-021-03946-w.
- ↑ Guo Chunyu; Putzke, Carsten; Konyzheva, Sofia; Huang Xiangwei; Gutierrez-Amigo, Martin; Errea, Ion; Chen Dong; Vergniory, Maia G. et al. (2022-10-12). "Switchable chiral transport in charge-ordered kagome metal CsV3Sb5" (in en). Nature 611 (7936): 461–466. doi:10.1038/s41586-022-05127-9. ISSN 1476-4687. PMID 36224393. Bibcode: 2022Natur.611..461G.
- ↑ Jiang Yu-Xiao; Yin Jia-Xin; Denner, M. Michael; Shumiya, Nana; Ortiz, Brenden R.; Xu Gang; Guguchia, Zurab; He Junyi et al. (October 2021). "Unconventional chiral charge order in kagome superconductor KV3Sb5" (in en). Nature Materials 20 (10): 1353–1357. doi:10.1038/s41563-021-01034-y. ISSN 1476-4660. PMID 34112979. Bibcode: 2021NatMa..20.1353J. https://www.nature.com/articles/s41563-021-01034-y.
- ↑ Chen Hui; Yang Haitao; Hu Bin; Zhao Zhen; Yuan Jie; Xing Yuqing; Qian Guojian; Huang Zihao et al. (November 2021). "Roton pair density wave in a strong-coupling kagome superconductor" (in en). Nature 599 (7884): 222–228. doi:10.1038/s41586-021-03983-5. ISSN 1476-4687. PMID 34587621. Bibcode: 2021Natur.599..222C. https://www.nature.com/articles/s41586-021-03983-5.
- ↑ Hou Zhipeng; Ren Weijun; Ding Bei; Xu Guizhou; Wang Yue; Yang Bing; Zhang Qiang; Zhang Ying et al. (August 2017). "Observation of Various and Spontaneous Magnetic Skyrmionic Bubbles at Room Temperature in a Frustrated Kagome Magnet with Uniaxial Magnetic Anisotropy" (in en). Advanced Materials 29 (29): 1701144. doi:10.1002/adma.201701144. PMID 28589629. Bibcode: 2017AdM....2901144H. https://onlinelibrary.wiley.com/doi/10.1002/adma.201701144.
Original source: https://en.wikipedia.org/wiki/Kagome metal.
Read more |