Earth:Langbeinites

From HandWiki
Revision as of 12:15, 5 February 2024 by WikiG (talk | contribs) (url)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Class of chemical compounds

Langbeinites are a family of crystalline substances based on the structure of langbeinite with general formula M
2
M'
2
(SO
4
)
3
, where M is a large univalent cation (such as potassium, rubidium, caesium, or ammonium), and M' is a small divalent cation (for example, magnesium, calcium, manganese, iron, cobalt, nickel, copper, zinc or cadmium). The sulfate group, SO2−
4
, can be substituted by other tetrahedral anions with a double negative charge such as tetrafluoroberyllate (BeF2−
4
), selenate (SeO2−
4
), chromate (CrO2−
4
), molybdate (MoO2−
4
), or tungstates. Although monofluorophosphates are predicted, they have not been described. By redistributing charges other anions with the same shape such as phosphate also form langbeinite structures. In these the M' atom must have a greater charge to balance the extra three negative charges.

At higher temperatures the crystal structure is cubic P213.[1] However, the crystal structure may change to lower symmetries at lower temperatures, for example, P21, P1, or P212121.[1] Usually this temperature is well below room temperature, but in a few cases the substance must be heated to acquire the cubic structure.

Crystal structure

The crystal structures of langbeinites consist of a network of oxygen vertex-connected tetrahedral polyanions (such as sulfate) and distorted metal ion-oxygen octahedra.[2] The unit cell contains four formula units. In the cubic form the tetrahedral anions are slightly rotated from the main crystal axes. When cooled, this rotation disappears and the tetrahedra align, resulting in lower energy as well as lower crystal symmetry.

Examples

Sulfates include dithallium dicadmium sulfate,[3] dirubidium dicadmium sulfate,[4] dipotassium dicadmium sulfate,[5] dithallium manganese sulfate,[6] and dirubidium dicalcium trisulfate.[7]

Selenates include diammonium dimanganese selenate.[1] A diammonium dicadmium selenate langbeinite could not be crystallised from water, but a trihydrate exists.[8]

Chromate based langbeinites include dicaesium dimanganese chromate.[1]

Molybdates include Rb
2
Co
2
(MoO
4
)
3
.[1] Potassium members are absent, as are zinc and copper containing solids, which all crystallize in different forms. Manganese, magnesium, cadmium and some nickel double molybdates exist as langbeinites.[9]

Double tungstates of the form A
2
B
2
(WO
4
)
3
are predicted to exist in the langbeinite form.[10]

An examples with tetrafluroberyllate is dipotassium dimanganese tetrafluoroberyllate (K
2
Mn
2
(BeF
4
)
3
).[11] Other tetrafluoroberyllates may include: Rb
2
Mg
2
(BeF
4
)
3
; Tl
2
Mg
2
(BeF
4
)
3
; Rb
2
Mn
2
(BeF
4
)
3
; Tl
2
Mn
2
(BeF
4
)
3
; Rb
2
Ni
2
(BeF
4
)
3
; Tl
2
Ni
2
(BeF
4
)
3
; Rb
2
Zn
2
(BeF
4
)
3
; Tl
2
Zn
2
(BeF
4
)
3
; Cs
2
Ca
2
(BeF
4
)
3
; Rb
2
Ca
2
(BeF
4
)
3
; RbCsMnCd(BeF
4
)
3
; Cs
2
MnCd(BeF
4
)
3
; RbCsCd
2
(BeF
4
)
3
; Cs
2
Cd
2
(BeF
4
)
3
; Tl
2
Cd
2
(BeF
4
)
3
; (NH
4
)
2
Cd
2
(BeF
4
)
3
; KRbMnCd(BeF
4
)
3
; K
2
MnCd(BeF
4
)
3
; Rb
2
MnCd(BeF
4
)
3
; Rb
2
Cd
2
(BeF
4
)
3
; RbCsCo
2
(BeF
4
)
3
; (NH
4
)
2
Co
2
(BeF
4
)
3
; K
2
Co
2
(BeF
4
)
3
; Rb
2
Co
2
(BeF
4
)
3
; Tl
2
Co
2
(BeF
4
)
3
; RbCsMn
2
(BeF
4
)
3
; Cs
2
Mn
2
(BeF
4
)
3
; RbCsZn
2
(BeF
4
)
3
; (NH
4
)
2
Mg
2
(BeF
4
)
3
; (NH
4
)
2
Mn
2
(BeF
4
)
3
; (NH
4
)
2
Ni
2
(BeF
4
)
3
; (NH
4
)
2
Zn
2
(BeF
4
)
3
;KRbMg
2
(BeF
4
)
3
; K
2
Mg
2
(BeF
4
)
3
; KRbMn
2
(BeF
4
)
3
; K
2
Ni
2
(BeF
4
)
3
; K
2
Zn
2
(BeF
4
)
3
.[12]

The phosphate containing langbeinites were found in 1972 with the discovery of KTi
2
(PO
4
)
3
, and since then a few more phosphates that also contain titanium have been found such as Na
2
FeTi(PO
4
)
3
and Na
2
CrTi(PO
4
)
3
. By substituting metals in A
2
MTi(PO
4
)
3
, A from (K, Rb, Cs), and M from (Cr, Fe, V), other langbeinites are made. The NASICON-type structure competes for these kinds of phosphates, so not all possibilities are langbeinites.[1] Other phosphate based substances include K
2
YTi(PO
4
)
3
, K
2
ErTi(PO
4
)
3
, K
2
YbTi(PO
4
)
3
, K
2
CrTi(PO
4
)
3
,[1] K
2
AlSn(PO
4
)
3
,[13] KRbYbTi(PO
4
)
3
.[14] Sodium barium diiron tris-(phosphate) (NaBaFe
2
(PO
4
)
3
) is yet another variation with the same structure but differently charged ions.[15] Most phosphates of this kind of formula do not form langbeinites, instead crystallise in the NASICON structure with archetype Na
3
Zr
2
(PO
4
)(SiO
4
)
2
.[1]

A langbeinite with arsenate is known to exist by way of K
2
ScSn(AsO
4
)
3
.[16]

Properties

Physical properties

Langbeinite crystals can show ferroelectric or ferroelastic properties.[1] Diammonium dicadmium sulfate identified by Jona and Pepinsky[17] with a unit cell size of 10.35 Å becomes ferroelectric when the temperature drops below 95 K.[18] The phase transition temperature is not fixed, and can vary depending on the crystal or history of temperature change. So for example the phase transition in diammonium dicadmium sulfate can occur between 89 and 95 K.[19] Under pressure the highest phase transition temperature increases. ∂T/∂P = 0.0035 degrees/bar. At 824 bars there is a triple point with yet another transition diverging at a slope of ∂T/∂P = 0.103 degrees/bar.[20] For dipotassium dimanganese sulfate pressure causes the transition to rise at the rate of 6.86 °C/kbar. The latent heat of the transition is 456 cal/mol.[21]

Dithallium dicadmium sulfate was shown to be ferroelectric in 1972.[22]

Dipotassium dicadmium sulfate is thermoluminescent with stronger outputs of light at 350 and 475 K. This light output can be boosted forty times with a trace amount of samarium.[23] Dipotassium dimagnesium sulfate doped with dysprosium develops thermoluminescence and mechanoluminescence after being irradiated with gamma rays.[24] Since gamma rays occur naturally, this radiation induced thermoluminescence can be used to date evaporites in which langbeinite can be a constituent.[25]

At higher temperatures the crystals take on cubic form, whereas at the lowest temperatures they can transform to an orthorhombic crystal group. For some types there are two more phases, and as the crystal is cooled it goes from cubic, to monoclinic, to triclinic to orthorhombic. This change to higher symmetry on cooling is very unusual in solids.[26] For some langbeinites only the cubic form is known, but that may be because it has not been studied at low enough temperatures yet. Those that have three phase transitions go through these crystallographic point groups: P213 – P21 – P1 – P212121, whereas the single phase change crystals only have P213 – P212121.

K
2
Cd
2
(SO
4
)
3
has a transition temperature above room temperature, so that it is ferroelectric in standard conditions. The orthorhombic cell size is a=10.2082 Å, b=10.2837 Å, c=10.1661 Å.[27]

Where the crystals change phase there is a discontinuity in the heat capacity. The transitions may show thermal hysteresis.[28]

Different cations can be substituted so that for example K
2
Cd
2
(SO
4
)
3
and Tl
2
Cd
2
(SO
4
)
3
can form solid solutions for all ratios of thallium and potassium. Properties such as the phase transition temperature and unit cell sizes vary smoothly with the composition.[29]

Langbeinites containing transition metals can be coloured. For example, cobalt langbeinite shows a broad absorption around 555 nm due to the cobalt 4T1g(F)4T1g(P) electronic transition.[30]

The enthalpy of formation (ΔfHm) for solid (NH
4
)
2
Cd
2
(SO
4
)
3
at 298.2 K is −3031.74±0.08 kJ/mol, and for K
2
Cd
2
(SO
4
)
3
it is −3305.52±0.17 kJ/mol.[31]

Sulfates

Properties of langbeinites with sulfate anions
Formula Weight (g/mol) Comment / Symmetries Transition temperature (K) Density Cell size (Å) Refractive index
1 2 3[32]
Na
2
Mg
2
(SO
4
)
3
382.78 3 phases, 1–2, >3 250 350 575[33]
K
2
Mg
2
(SO
4
)
3
414.99 4 phases langbeinite 51 54.9 63.8 2.832[34] 9.9211[35] 1.536[36]
Rb
2
Mg
2
(SO
4
)
3
507.73 made 3.367[37] 10.0051[38] 1.556[38]
Cs
2
Mg
2
(SO
4
)
3
602.61 no compound[10]
(NH
4
)
2
Mg
2
(SO
4
)
3
372.87 Efremovite[39] 241[40] 220[40] 2.49[41] 9.979[41]
Tl
2
Mg
2
(SO
4
)
3
745.56 ≥3 phase 227.8[40] 330.8[40]
K
2
CaMg(SO
4
)
3
430.77 made 2.723[42] 10.1662[42] 1.525[42]
K
2
Ca
2
(SO
4
)
3
446.54 4 phases calciolangbeinite[43][44][45] 457 2.69 2.683[46] 10.429Å a=10.334 b=10.501 c=10.186 Nα=1.522 Nβ=1.526 Nγ=1.527
Rb
2
Ca
2
(SO
4
)
3
539.28 2 phases 183 3.034[47] 10.5687[47] 1.520[47]
Cs
2
Ca
2
(SO
4
)
3
634.15 3.417[48][49] 10.7213 1.549
Tl
2
Ca
2
(SO
4
)
3
no compound[10]
(NH
4
)
2
Ca
2
(SO
4
)
3
404.42 made 158 2.297[50] 10.5360[51] 1.532[51]
(NH
4
)
2
V
2
(SO
4
)
3
colour clear green[52] 2.76[53] 10.089[52]
K
2
Mn
2
(SO
4
)
3
476.26 manganolangbeinite[54]
2 phases
pale pink[55]
191 3.02[35] 10.014[35]
(orthorhombic)
a=10.081, b=10.108, c=10.048 Å[56]
1.576[55]
Rb
2
Mn
2
(SO
4
)
3
569 made[57] 3.546[58] 10.2147[58] 1.590[58]
Cs
2
Mn
2
(SO
4
)
3
663.87 predicted[10]
(NH
4
)
2
Mn
2
(SO
4
)
2
434.14 made 2.72[41] 10.1908[59]
Tl
2
Mn
2
(SO
4
)
3
806.83 made 5.015[60] 10.2236[60] 1.722[60]
K
2
Fe
2
(SO
4
)
3
478.07 made ?130
Rb
2
Fe
2
(SO
4
)
3
predicted[10]
Tl
2
Fe
2
(SO
4
)
3
808.64 exists[10]
(NH
4
)
2
Fe
2
(SO
4
)
3
[52]
435.95 mineral ferroefremovite 2.84[41] 10.068[41] 1.574[61]
K
2
Co
2
(SO
4
)
3
484.25 2 phases
deep purple
126 3.280[34] 9.9313[35] 1.608[62]
Rb
2
Co
2
(SO
4
)
3
576.99 made 3.807[63] 10.0204[63] 1.602[63]
Cs
2
Co
2
(SO
4
)
3
671.87
(NH
4
)
2
Co
2
(SO
4
)
3
442.13 made 2.94[41] 9.997[41]
Tl
2
Co
2
(SO
4
)
3
813.82 made 5.361[64] 10.0312 1.775
K
2
Ni
2
(SO
4
)
3
483.77 made[65] light greenish yellow[66] 3.369[34] 9.8436[66] 1.620[66]
Rb
2
Ni
2
(SO
4
)
3
576.51 made 3.921[67] 9.9217[67] 1.636[67]
Cs
2
Ni
2
(SO
4
)
3
671.39 predicted[10]
(NH
4
)
2
Ni
2
(SO
4
)
3
441.65 made[65] 160 3.02[41] 9.904[41]
Tl
2
Ni
2
(SO
4
)
3
814.34 predicted[10]
Rb
2
Cu
2
(S
04
)
3
predicted[10]
Cs
2
Cu
2
(S
04
)
3
predict not[10]
Tl
2
Cu
2
(S
04
)
3
predicted[10]
K
2
Zn
2
(SO
4
)
3
497.1 4 phases 75 138 3.376[34] 9.9247[68] 1.592[68]
Rb
2
Zn
2
(S
04
)
3
predicted[10]
Cs
2
Zn
2
(S
04
)
3
predict not[10]
Tl
2
Zn
2
(S
04
)
3
predicted[10]
K
2
Cd
2
(SO
4
)
3
591.21 2 phases 432 2.615 3.677[69] a=10.212 b=10.280 c=10.171 Nα=1.588 Nγ=1.592
Rb
2
Cd
2
(SO
4
)
3
683.95 4 phases 66 103 129 4.060[35][70] 10.3810[35][70] 1.590[70]
(NH
4
)
2
Cd
2
(SO
4
)
3
549.09 4 phases 95 3.288[35] 10.3511[35]
Tl
2
Cd
2
(SO
4
)
3
921.78 4 phases 92 120 132 5.467[35] 10.3841[35] 1.730[71]

Fluoroberyllates

Properties of langbeinites with fluoroberyllate (BeF2−
4
) anion
Formula Weight (g/mol) Cell size (Å) Volume Density Comment
K
2
Mn
2
(BeF
4
)
3
[11]
4 phases transition at 213
K
2
Mg
2
(BeF
4
)
3
[72]
9.875 962.8 1.59
(NH
4
)
2
Mg
2
(BeF
4
)
3
[72]
9.968 1.37
KRbMg
2
(BeF
4
)
3
[72]
9.933 1.72
Rb
2
Mg
2
(BeF
4
)
3
[72]
9.971 1.91
Tl
2
Mg
2
(BeF
4
)
3
[72]
9.997 2.85
K
2
Ni
2
(BeF
4
)
3
[72]
9.888 1.86
Rb
2
Ni
2
(BeF
4
)
3
[72]
9.974 2.19
Tl
2
Ni
2
(BeF
4
)
3
[72]
9.993 3.13
K
2
Co
2
(BeF
4
)
3
[72]
9.963 988 1.82
(NH
4
)
2
Co
2
(BeF
4
)
3
[72]
10.052 1.61
Rb
2
Co
2
(BeF
4
)
3
[72]
10.061 2.14
Tl
2
Co
2
(BeF
4
)
3
[72]
10.078 3.05
RbCsCo
2
(BeF
4
)
3
[72]
10.115 2.28
K
2
Zn
2
(BeF
4
)
3
[72]
9.932 1.89
(NH
4
)Zn
2
(BeF
4
)
3
[72]
10.036 1.67
Rb
2
Zn
2
(BeF
4
)
3
[72]
10.035 2.20
Tl
2
Zn
2
(BeF
4
)
3
[72]
10.060 3.14
RbCsZn
2
(BeF
4
)
3
[72]
10.102 2.36
K
2
Mn
2
(BeF
4
)
3
[72]
10.102 1.72
KRbMn
2
(BeF
4
)
3
[72]
10.187 1.82
(NH
4
)
2
Mn
2
(BeF
4
)
3
[72]
10.217 1.50
Rb
2
Mn
2
(BeF
4
)
3
[72]
10.243 2.00
Tl
2
Mn
2
(BeF
4
)
3
[72]
10.255 2.87
RbCsMn
2
(BeF
4
)
3
[72]
10.327 2.12
Cs
2
Mn
2
(BeF
4
)
3
[72]
10.376 2.26
K
2
MnCd(BeF
4
)
3
[72]
10.133 1.92
KRbMnCd(BeF
4
)
3
[72]
10.220 2.04
Rb
2
MnCd(BeF
4
)
3
[72]
10.133 1.92
RbCsMnCd(BeF
4
)
3
[72]
10.380 2.28
Cs
2
MnCd(BeF
4
)
3
[72]
10.451 2.41
(NH
4
)
2
Cd
2
(BeF
4
)
3
[72]
10.342 1.87
Rb
2
Cd
2
(BeF
4
)
3
[72]
10.385 2.32
Tl
2
Cd
2
(BeF
4
)
3
[72]
10.402 3.16
RbCsCd
2
(BeF
4
)
3
[72]
10.474 2.43
Cs
2
Cd
2
(BeF
4
)
3
[72]
10.558 2.53
RbCsCdCa(BeF
4
)
3
[72]
10.501 2.15
Rb
2
Ca
2
(BeF
4
)
3
[72]
10.480 1.74
RbCsCa
2
(BeF
4
)
3
[72]
10.583 1.86
Cs
2
Ca
2
(BeF
4
)
3
[72]
10.672 1.98
Cs
2
Mg
2
(BeF
4
)
3
does not exist[72]

Phosphates

Properties of langbeinites with phosphate (PO2−
4
) anion
Formula Weight (g/mol) Cell size (Å) Density Comment ref
LiCs
2
Y
2
(PO
4
)
3
[73]
735.48 10.5945 4.108
LiRb
2
Y
2
(PO
4
)
3
[74]
non-linear optical
K
2
YTi(PO
4
)
3
[1]
578.25 10.1053 3.192
K
2
ErTi(PO
4
)
3
[1]
584.03 10.094 3.722
K
2
YbTi(PO
4
)
3
[1]
499.89 10.1318 3.772
K
2
CrTi(PO
4
)
3
[1]
462.98 9.8001 3.267
(NH
4
)(H
3
O)TiIII
TiIV
(PO
4
)
3
[75]
417.71 9.9384
K
2
Ti
2
(PO
4
)
3
[76]
458.84 9.8688 Also K
2-x
; dark blue
Rb
2
Ti
2
(PO
4
)
3
[76]
551.58 9.9115
Tl
2
Ti
2
(PO
4
)
3
[76]
789.41 9.9386
Na
2
FeTi(PO
4
)
3
[77]
9.837
Na
2
CrTi(PO
4
)
3
[77]
9.775
K
2
Mn
0.5
Ti
1.5
(PO
4
)
3
[78]
9.903 3.162 dark brown
K
2
Co
0.5
Ti
1.5
(PO
4
)
3
[78]
9.844 3.233 dark brown
Rb
4
NiTi
3
(PO
4
)
6
[79]
1113.99÷2 9.9386
K
2
AlTi(PO
4
)
3
[80]
437.96 9.7641 3.125 colourless
K2TiYb(PO4)3[81]
Li
2
Zr
2
(PO
4
)
3
[82]
481.24
K
2
(Ce, ..., Lu)Zr(PO
4
)
3
[83]
594.45...629.3 10.29668
Rb
2
FeZr(PO
4
)
3
[84]
602.92 10.1199
K
2
FeZr(PO
4
)
3
[85]
510.18 10.0554 dark grey Note Na
2
FeZr(PO
4
)
3
is not a langbeinite.[86]
K
2
YZr(PO
4
)
3
[87]
543.24 10.3346 random Y and Zr
K
2
GdZr(PO
4
)
3
[87]
611.58 10.3457 random Gd and Zr
K
2
YHf(PO
4
)
3
[88]
630.51 10.3075 3.824
Li(H
2
O)
2
Hf
2
(PO
4
)
3
[89]
684.87 10.1993
K
2
BiHf(PO
4
)
3
[90]
750.58
Li(H
2
O)
2
Zr
2
(PO
4
)
3
[82]
510.33 10.2417
K
2
AlSn(PO
4
)
3
508.78 9.798[13]
K
2
CrSn(PO
4
)
3
K
2
InSn(PO
4
)
3
K
2
FeSn(PO
4
)
3
K
2
YbSn(PO
4
)
3
K
4
Al
3
Ta(PO
4
)
6
[91]
988.11 9.7262
K
4
Cr
3
Ta(PO
4
)
6
[91]
1063.16 9.8315
K
4
Fe
3
Ta(PO
4
)
6
[91]
1074.70 9.9092
K
4
Tb
3
Ta(PO
4
)
6
10.3262[92]
K
4
Ga
3
Ta(PO
4
)
6
[93]
K
4
Gd
3
Ta(PO
4
)
6
[93]
K
4
Dy
3
Ta(PO
4
)
6
[93]
K
4
Ho
3
Ta(PO
4
)
6
[93]
K
4
Er
3
Ta(PO
4
)
6
[93]
K
4
Yb
3
Ta(PO
4
)
6
[93]
Rb
4
Ga
3
Ta(PO
4
)
6
[93]
Rb
4
Gd
3
Ta(PO
4
)
6
[93]
Rb
4
Dy
3
Ta(PO
4
)
6
[93]
Rb
4
Ho
3
Ta(PO
4
)
6
[93]
Rb
4
Er
3
Ta(PO
4
)
6
[93]
Rb
4
Yb
3
Ta(PO
4
)
6
[93]
K
4
Fe
3
Nb(PO
4
)
6
[91]
986.66 9.9092
KBaEr
2
(PO
4
)
3
[94]
795.857
RbBaEr
2
(PO
4
)
3
[94]
842.227
CsBaEr
2
(PO
4
)
3
[94]
889.665
(Rb,Cs)
2
(Pr,Er)Zr(PO
4
)
3
[94]
KCsFeZrP
3
O
12
603.99 10.103[95]
CaFe
3
O(PO
4
)
3
[96]
508.53
SrFe
3
O(PO
4
)
3
[96]
556.1
PbFe
3
O(PO
4
)
3
[96]
675.6
KSrFe
2
(PO
4
)
3
[97]
523.32 9.809 3.68 yellowish
Pb
1.5
VIV

2
(PO
4
)
3
697.6 9.7818 4.912[98]
K
2
TiV(PO
4
)
3
[99]
9.855 green
BaTiV(PO
4
)
3
[99]
9.922 3.54 at high temperature > 950 °C dark grey
KBaV
2
(PO
4
)
3
[99]
9.873 greenish yellow
Ba
1.5
V
2
(PO
4
)
3
[99]
9.884 grey
Ba
1.5
Fe3+

2
(PO
4
)
3
[100][101]
602.59
KSrSc
2
(PO
4
)
3
[102]
501.54
Rb
0.743
K
0.845
Co
0.293
Ti
1.707
(PO
4
)
3
[103]
9.8527
K
2
BiZr(PO
4
)
6
[104]
663.32 10.3036
KBaSc
2
(PO
4
)
3
[105]
503.25
KBaIn
2
(PO
4
)
3
[106]
KBaRZrP
2
SiO
12
[2]
R = La, Nd, Sm, Eu, Gd, Dy, Y
KBaYSnP
2
SiO
12
[2]
666.07
KBaFe
2
(PO
4
)
3
[107]
525.03 9.8732 (at 4 K)
KBaCr
2
(PO
4
)
3
[108]
517.33 9.7890
Rb
2
FeTi(PO
4
)
3
[109]
511.56 9.8892 Na
2
FeTi(PO
4
)
3
has NZP structure[86]
KBaMgTi(PO
4
)
3
[110]
485.51 9.914 KSrMgTi crystallises in kosnarite form
KPbMgTi(PO
4
)
3
[110]
555.39 9.8540 KSrMgTi in kosnarite form
RbBaMgTi(PO
4
)
3
[110]
9.954 531.88 CsBa does not form
RbPbMgTi(PO
4
)
3
[110]
601.76 9.9090 CsPb does not form
KSrMgZr(PO
4
)
3
[110]
479.16 10.165
KPbMgZr(PO
4
)
3
[110]
598.74 10.111
KBaMgZr(PO
4
)
3
[110]
528.87 10.106
RbSrMgZr(PO
4
)
3
[110]
525.53 10.218
RbPbMgZr(PO
4
)
3
[110]
645.11 10.178
RbBaMgZr(PO
4
)
3
[110]
575.24 10.178
CsSrMgZr(PO
4
)
3
[110]
572.97 10.561 over 1250 °C forms kosnarite phase
Ba
3
In
4
(PO
4
)
6
[111]
10.1129
Ba
3
V
4
(PO
4
)
6
[112]
1185.58 9.8825 4.08 yellow-green
KPbCr
2
(PO
4
)
3
[113]
9.7332
KPbFe
2
(PO
4
)
3
[113]
9.8325 beige
K
4
NiHf
3
(PO
4
)
6
[114]
660.192 (half) 10.12201 4.228 yellow

Phosphate silicates

substance formula weight unit cell edge Å density comment ref
K2Sn2(PO4)2SiO4[115] Stable to 650 °C
K2Zr2(PO4)2SiO4[115] Stable to 1000 °C
Cs2Zr2(PO4)2SiO4[116]
CsKZr2(PO4)2SiO4[116]
KBaZrY(PO4)2SiO4 [117]
KBaZrLa(PO4)2SiO4 [117]
KBaZrNd(PO4)2SiO4 [117]
KBaZrSm(PO4)2SiO4 [117]
KBaZrEu(PO4)2SiO4 [117]


Mixed anion phosphates

substance formula weight unit cell edge Å density comment ref
K2MgTi(SO4)(PO4)2 [118]
K2Fe2(Mo4)(PO4)2 [119]
K2Sc2(Mo4)(PO4)2 [119]
K2Sc2(W4)(PO4)2 [119]

Vanadates

The orthovanadates have four formula per cell, with a slightly distorted cell that has orthorhombic symmetry.

formula weight comment Cell dimensions Å Volume density refractive
Formula g/mol symmetries a b c index
LiBaCr
2
(VO
4
)
3
[120]
593.08 Orthorhombic 9.98 10.52 9.51 998 4.02
NaBaCr
2
(VO
4
)
3
[120]
609.13 Orthorhombic 9.99 10.52 9.53 1002 4.09
AgBaCr
2
(VO
4
)
3
[120]
694.00 Orthorhombic 10.02 10.53 9.53 1005 4.62

Arsenates

substance formula weight unit cell edge Å density
K
2
ScSn(AsO
4
)
3
[121]
658.62 10.3927
Zr
2
NH
4
(AsO
4
)
3
 · H2O
[122]
632.558 10.532 3.379

Selenates

Langbeinite structured double selenates are difficult to make, perhaps because selenate ions arranged around the dication leave space for water, so hydrates crystallise from double selenate solutions. For example, when ammonia selenate and cadmium selenate solution is crystallized it forms diammonium dicadmium selenate trihydrate: (NH
4
)
2
Cd
2
(SeO
4
)
3
 · 3H2O
and when heated it loses both water and ammonia to form a pyroselenate rather than a langbeinite.[123]

substance formula weight unit cell edge Å density note
(NH
4
)
2
Mn
2
(SeO
4
)
3
[124]
574.83 10.53 3.26 forms continuous series with SO
4
too

Molybdates

substance formula weight unit cell edge Å density
Cs
2
Cd
2
(MoO
4
)
3
[125]
970.5 11.239
Rb
2
Co
2
(MoO
4
)
3
768.7
Cs
2
Co
2
(MoO
4
)
3
[126]
Cs
2
Ni
2
(MoO
4
)
3
[127]
863.01 10.7538
(H
3
O)
2
Mn
2
(MoO
4
)
3
[128]
627.75 10.8713
K
2
Mn
2
(MoO
4
)
3
[129]

Tungstates

substance formula weight unit cell edge Å density
Rb
2
Mg
2
(WO
4
)
3
[130]
963.06 10.766
Cs
2
Mg
2
(WO
4
)
3
[130]
1057.93 10.878

Preparation

Diammonium dicadmium sulfate can be made by evaporating a solution of ammonium sulfate and cadmium sulfate.[19] Dithallium dicadmium sulfate can be made by evaporating a water solution at 85 °C.[22] Other substances may be formed during crystallisation from water such as Tutton's salts or competing compounds like Rb
2
Cd
3
(SO
4
)
4
 · 5H2O
.[131]

Potassium and ammonium nickel langbeinite can be made from nickel sulfate and the other sulfates by evaporating a water solution at 85 °C.[65]

Dipotassium dizinc sulfate can be formed into large crystals by melting zinc sulfate and potassium sulfate together at 753 K. A crystal can be slowly drawn out of the melt from a rotating crucible at about 1.2 mm every hour.[132]

Li(H
2
O)
2
Hf
2
(PO
4
)
3
can be made by heating HfCl
4
, Li
2
B
4
O
7
, H
3
PO
4
, water and hydrochloric acid to 180 °C for eight days under pressure.[89] Li(H
2
O)
2
Hf
2
(PO
4
)
3
converts to Li
2
Hf
2
(PO
4
)
3
on heating to 200 °C.[82]

The sol-gel method produces a gel from a solution mixture, which is then heated. Rb
2
FeZr(PO
4
)
3
can be made by mixing solutions of FeCl
3
, RbCl, ZrOCl
2
, and dripping in H
3
PO
4
. The gel produced was dried out at 95 °C and then baked at various temperatures from 400 to 1100 °C.[84]

Langbeinites crystals can be made by the Bridgman technique, Czochralski process or flux technique.

A Tutton's salt may be heat treated and dehydrate, e.g. (NH
4
)
2
Mn
2
(SeO
4
)
3
can be made from (NH
4
)
2
Mn(SeO
4
)
3
 · 6(H
2
O)
heated to 100 °C, forming (NH
4
)
2
(SeO
4
)
as a side product.[133] Similarly the ammonium vanadium Tutton's salt, (NH
4
)
2
V(SO
4
)
2
, heated to 160 °C in a closed tube produces (NH
4
)
2
V
2
(SO
4
)
3
. At lower temperatures a hydroxy compound is formed.[52]

Use

Few uses have been made of these substances. Langbeinite itself can be used as an "organic" fertiliser with potassium, magnesium and sulfur, all needed for plant growth. Electrooptic devices could be made from some of these crystals, particularly those that have cubic transition temperatures as temperatures above room temperature. Research continues into this. Ferroelectric crystals could store information in the location of domain walls.

The phosphate langbeinites are insoluble, stable against heat, and can accommodate a large number of different ions, and have been considered for immobilizing unwanted radioactive waste.[134]

Zirconium phosphate langbeinites containing rare earth metals have been investigated for use in white LEDs and plasma displays.[104] Langbeinites that contain bismuth are photoluminescent.[104] In case of iron-containing ones complex magnetic behavior may be found.[135]

References

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 Norberg, Stefan T. (2002). "New phosphate langbeinites, K2MTi(PO4)3 (M = Er, Yb or Y), and an alternative description of the langbeinite framework". Acta Crystallographica B 58 (5): 743–749. doi:10.1107/S0108768102013782. PMID 12324686. Bibcode2002AcCrB..58..743N. 
  2. 2.0 2.1 2.2 Kumar, Sathasivam Pratheep; Gopal, Buvaneswari (October 2015). "New rare earth langbeinite phosphosilicates KBaREEZrP2SiO12 (REE: La, Nd, Sm, Eu, Gd, Dy) for lanthanide comprising nuclear waste storage". Journal of Alloys and Compounds 657: 422–429. doi:10.1016/j.jallcom.2015.10.088. 
  3. Guelylah, A.; G. Madariaga; W. Morgenroth; M. I. Aroyo; T. Breczewski; E. H. Bocanegra (2000). "X-ray structure determination of the monoclinic (121 K) and orthorhombic (85 K) phases of langbeinite-type dithallium dicadmium sulfate". Acta Crystallographica Section B 56 (6): 921–935. doi:10.1107/S0108768100009514. PMID 11099956. Bibcode2000AcCrB..56..921G. 
  4. Guelylah, Abderrahim; Gotzon Madariaga (2003). "Dirubidium dicadmium sulfate at 293 K". Acta Crystallographica Section C 59 (5): i32–i34. doi:10.1107/S0108270103007479. PMID 12743381. Bibcode2003AcCrC..59I..32G. 
  5. Guelylah, A.; M. I. Aroyo; J. M. Pérez-Mato (1996). "Microscopic distortion and order parameter in langbeinite K2Cd2(SO4)3". Phase Transitions 59 (1–3): 155–179. doi:10.1080/01411599608220042. Bibcode1996PhaTr..59..155G. 
  6. Zemann, Anna; J. Zemann (1957). "Die Kristallstruktur von Langbeinit, K2Mg2(SO4)3". Acta Crystallographica 10 (6): 409–413. doi:10.1107/S0365110X57001346. Bibcode1957AcCry..10..409Z. 
  7. Boujelben, Mohamed; Mohamed Toumi; Tahar Mhiri (2007). "Langbeinite-type Rb2Ca2(SO4)3". Acta Crystallographica Section E 63 (7): i157. doi:10.1107/S1600536807027043. Bibcode2007AcCrE..63I.157B. 
  8. Martínez, M. L.; Rodriguez, A.; Mestres, L.; Solans, X.; Bocanegra, E. H. (November 1990). "Synthesis, crystal structure, and thermal studies of (NH4)2Cd2(SeO4)3·3H2O". Journal of Solid State Chemistry 89 (1): 88–93. doi:10.1016/0022-4596(90)90297-B. Bibcode1990JSSCh..89...88M. 
  9. Солодовникова, С. Ф.; Солодовникова, В. А. (1997). "Новый тип строения в морфотропном ряду A+2M+2(MoO4)3: кристаллическая структура Rb2Cu2(MoO4)3" (in Russian). ЖУРНАЛ структур. химии 38 (5): 914–921. http://jsc.niic.nsc.ru/JSC/jsc_rus/1997-t38/n5/V38_N5_12.pdf. 
  10. 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 10.12 10.13 Kiselyova, Nadezhda (September 1997). "Property Predictions for Multicomponent Compounds". Russian Academy of Sciences. http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA332686. 
  11. 11.0 11.1 Guelylah, A.; T. Breczewski; G. Madariaga (1996). "A New Langbeinite: Dipotassium Dimanganese Tetrafluoroberyllate". Acta Crystallographica Section C 52 (12): 2951–2954. doi:10.1107/S0108270196008827. Bibcode1996AcCrC..52.2951G. 
  12. Pies, W.; A. Weiss (1973). "A458, I.1.3 Complex fluorides and fluorine double salts". Key Elements: F, Cl, Br, I. Landolt-Börnstein - Group III Condensed Matter. 7a. pp. 91–103. doi:10.1007/10201462_9. ISBN 978-3-540-06166-3. 
  13. 13.0 13.1 Li, Hai-Yan; Dan Zhao (2011). "A new langbeinite-type phosphate: K2AlSn(PO4)3". Acta Crystallographica Section E 67 (10): i56. doi:10.1107/S1600536811037263. PMID 22058680. Bibcode2011AcCrE..67I..56L. 
  14. Gustafsson, Joacim C. M.; Stefan T. Norberg; Göran Svensson (2006). "The langbeinite type Rb2TiY(PO4)3". Acta Crystallographica Section E 62 (7): i160–i162. doi:10.1107/S1600536806021635. Bibcode2006AcCrE..62I.160G. 
  15. Hidouri, Mourad; Hasna Jerbi; Mongi Ben Amara (2008). "The iron phosphate NaBaFe2(PO4)3". Acta Crystallographica Section E 64 (8): i51. doi:10.1107/S1600536808023040. PMID 21202994. Bibcode2008AcCrE..64I..51H. 
  16. Harrison, William T. A. (2010). "K2ScSn(AsO4)3: an arsenate-containing langbeinite". Acta Crystallographica Section C 66 (7): i82–i84. doi:10.1107/S0108270110021670. PMID 20603547. Bibcode2010AcCrC..66I..82H. http://repositorio.unicamp.br/jspui/handle/REPOSIP/198934. 
  17. Jona, F.; R. Pepinsky (1956). "Ferroelectricity in the Langbeinite System". Physical Review 103 (4): 1126. doi:10.1103/PhysRev.103.1126. Bibcode1956PhRv..103.1126J. 
  18. McDowell, C. A.; P. Raghunathan; R. Srinivasan (1975). "Proton N.M.R. study of the dynamics of the ammonium ion in ferroelectric langbeinite, (NH4)2Cd2(SO4)3". Molecular Physics 29 (3): 815–824. doi:10.1080/00268977500100721. Bibcode1975MolPh..29..815M. 
  19. 19.0 19.1 Moriyoshi, C.; E. Magome (28 March 2007). "Structural Study of Langbeinite-type ((NH4)2Cd2(SO4)3) Crystal in the High Temperature Phase". http://ir.lib.hiroshima-u.ac.jp/metadb/up/ZZT00003/200703/Ferroelectrics_337_85.pdf. 
  20. Glogarová, M.; C. Frenzel; E. Hegenbarth (1972). "The Behaviour of (NH4)2Cd2(SO4)3 under Pressure". Physica Status Solidi B 53 (1): 369–372. doi:10.1002/pssb.2220530139. Bibcode1972PSSBR..53..369G. 
  21. Hikita, Tomoyuki; Makoto Kitabatake; Takuro Ikeda (1979). "Hydrostatic Pressure Effect on the Phase Transition of K2Mn2(SO4)3". Journal of the Physical Society of Japan 46 (2): 695–696. doi:10.1143/JPSJ.46.695. Bibcode1979JPSJ...46..695H. 
  22. 22.0 22.1 Brzina, B.; M. Glogarová (1972). "New ferroelectric langbeinite Tl2Cd2(SO4)3". Physica Status Solidi A 11 (1): K39–K42. doi:10.1002/pssa.2210110149. Bibcode1972PSSAR..11...39.. 
  23. Deshmukh, B. T.; S. V. Bodade; S. V. Moharil (1986). "Thermoluminescence of K2Cd2(SO4)3". Physica Status Solidi A 98 (1): 239–246. doi:10.1002/pssa.2210980127. Bibcode1986PSSAR..98..239D. 
  24. Panigrahi, A. K.; Dhoble, S. J.; Kher, R. S.; Moharil, S. V. (2003). "Thermo and mechanoluminescence of Dy3+ activated { K2Mg2(SO4)3 phosphor". Physica Status Solidi A 198 (2): 322–328. doi:10.1002/pssa.200306605. Bibcode2003PSSAR.198..322P. 
  25. Léost, I.; Féraud, G.; Blanc-Valleron, M. M.; Rouchy, J. M. (2001). "First absolute dating of Miocene Langbeinite evaporites by 40Ar/39Ar laser step-heating: [K2Mg2(SO4)3] Stebnyk Mine (Carpathian Foredeep Basin)". Geophysical Research Letters 28 (23): 4347–4350. doi:10.1029/2001GL013477. Bibcode2001GeoRL..28.4347L. 
  26. Franke, V.; E. Hegenbarth; B. Březina (1975). "Specific heat measurement on Tl2Cd2(SO4)3". Physica Status Solidi A 28 (1): K77–K80. doi:10.1002/pssa.2210280165. Bibcode1975PSSAR..28...77F. 
  27. Abrahams, S. C.; Bernstein, J. L. (1977). "Piezoelectric langbeinite-type K2Cd2(SO4)3: Room temperature crystal structure and ferroelastic transformation". The Journal of Chemical Physics 67 (5): 2146. doi:10.1063/1.435101. Bibcode1977JChPh..67.2146A. 
  28. Cao, Hongjie; Dalley, N. Kent; Boerio-Goates, Juliana (1993). "Calorimetric and structural studies of langbeinite-type Tl2Cd2(SO4)3". Ferroelectrics 146 (1): 45–56. doi:10.1080/00150199308008525. Bibcode1993Fer...146...45C. 
  29. Sutera, A.; Nassau, K.; Abrahams, S. C. (1981). "Phase-transition variation with composition in solid solutions of K2Cd2(SO4)3 with Tl2Cd2(SO4)3". Journal of Applied Crystallography 14 (5): 297–299. doi:10.1107/S0021889881009412. Bibcode1981JApCr..14..297S. 
  30. Percival, M. J. L. (1990). "Optical Absorption Spectroscopy of Doped Materials: The P213-P212121 Phase Transition in K2(Cd0.98Co0.02)2(SO4)3". Mineralogical Magazine 54 (377): 525–535. doi:10.1180/minmag.1990.054.377.01. Bibcode1990MinM...54..525P. 
  31. Zhou, Ya-Ping; Rui, Zhang; Hong-Wen, Wan; Zheng-Kun, Zhan; Ming-Fei, Xu (March 2001). "Thermochemical Studies on the Langbeinite-Type Double Sulfate Salts,(NH4)2Cd2(SO4)3 and K2Cd2(SO4)3" (in Chinese). Acta Physico-Chimica Sinica 17 (3): 247. doi:10.3866/PKU.WHXB20010312. http://www.whxb.pku.edu.cn/EN/abstract/abstract24330.shtml. 
  32. Boerio-Goates, Juliana; Johanne I. Artman; Brian F. Woodfield (1990). "Heat capacity studies of phase transitions in langbeinites II. K2Mg2(SO4)3". Physics and Chemistry of Minerals 17 (2): 173. doi:10.1007/BF00199670. Bibcode1990PCM....17..173B. 
  33. Trussov, I. A.; Male, L. L.; Sanjuan, M. L.; Orera, A.; Slater, P. R. (April 2019). "Understanding the complex structural features and phase changes in Na2Mg2(SO4)3: A combined single crystal and variable temperature powder diffraction and Raman spectroscopy study". Journal of Solid State Chemistry 272: 157–165. doi:10.1016/j.jssc.2019.02.014. Bibcode2019JSSCh.272..157T. http://zaguan.unizar.es/record/87694. 
  34. 34.0 34.1 34.2 34.3 Speer, D.; Salje, E. (1986). "Phase transitions in langbeinites I: Crystal chemistry and structures of K-double sulfates of the langbeinite type M3++K2(SO4)3, M++=Mg, Ni, Co, Zn, Ca". Physics and Chemistry of Minerals 13 (1): 17–24. doi:10.1007/BF00307309. Bibcode1986PCM....13...17S. 
  35. 35.0 35.1 35.2 35.3 35.4 35.5 35.6 35.7 35.8 35.9 Burkov, V. I.; Perekalina, Z. B. (2001). "Gyrotropy of Cubic Langbeinite Crystals". Inorganic Materials 37 (3): 203–212. doi:10.1023/A:1004165926149. 
  36. Template:Cite tech report
  37. Template:Cite tech report
  38. 38.0 38.1 Swanson et al. 1969, p. 50
  39. "Efremovite: Efremovite mineral information and data". https://www.mindat.org/min-1355.html. 
  40. 40.0 40.1 40.2 40.3 Kahrizi, Mojtaba; Steinitz, M. O. (1988). "Phase transitions and thermal expansion in langbeinite type compounds". Solid State Communications 66 (4): 375–378. doi:10.1016/0038-1098(88)90860-5. Bibcode1988SSCom..66..375K. 
  41. 41.0 41.1 41.2 41.3 41.4 41.5 41.6 41.7 41.8 AtomWork materials database at NIMS
  42. 42.0 42.1 42.2 Swanson et al. 1969, p. 37
  43. "Calciolangbeinite". Mineralogical Society of America. 13 June 2015. http://www.handbookofmineralogy.org/pdfs/calciolangbeinite.pdf. 
  44. "Calciolangbeinite: Mineral information, data and localities.". https://www.mindat.org/min-42383.html. 
  45. Pekov, Igor V.; Zubkova, Natalia V.; Galuskina, Irina O.; Kusz, Joachim; Koshlyakova, Natalia N.; Galuskin, Evgeny V.; Belakovskiy, Dmitry I.; Bulakh, Maria O. et al. (2022-01-28). "Calciolangbeinite- O , a natural orthorhombic modification of K 2 Ca 2 (SO 4 ) 3 , and the langbeinite–calciolangbeinite solid-solution system" (in en). Mineralogical Magazine 86 (4): 557–569. doi:10.1180/mgm.2021.95. ISSN 0026-461X. Bibcode2022MinM...86..557P. https://www.cambridge.org/core/product/identifier/S0026461X21000955/type/journal_article. 
  46. Swanson et al. 1969, p. 39
  47. 47.0 47.1 47.2 Swanson et al. 1969, p. 48
  48. Swanson et al. 1969, p. 12
  49. Gattow, G.; Zemann, J. (1958). "Über Doppelsulfate vom Langbeinit-Typ, A2+B22+(SO4)3" (in de). Zeitschrift für Anorganische und Allgemeine Chemie 293 (5–6): 233–240. doi:10.1002/zaac.19582930502. 
  50. Template:Cite tech report
  51. 51.0 51.1 Swanson et al. 1970, p. 7
  52. 52.0 52.1 52.2 52.3 Tudo, Joseph; Laplace, Laplace (July 1977). "Les sulfates doubles de vanadium et d'ammonium. I. Sur la schoenite de vanadium II et ammonium". Bulletin de la Société Chimique de France: Première Partie (7/8): 653–655. 
  53. NIMS search result
  54. Bellanca, A. (1947). Sulla simmetria della manganolangbeinite/ Atti Accad. Nazi. Lincei Rend. Classe Sci. Fis. Mat. Nat. 2, 451–455.
  55. 55.0 55.1 Swanson et al. 1968, p. 43
  56. Yamada, Noboru; Maeda, Masaki; Adachi, Hideaki (1981). "Structures of langbeinite-type dipotassium dimanganese sulfate in cubic and orthorhombic phases". Journal of the Physical Society of Japan 50 (3): 907–913. doi:10.1143/jpsj.50.907. Bibcode1981JPSJ...50..907Y. 
  57. Swain, Diptikanta; Guru Row, T. N. (2006). "Rb2Mn2(SO4)3, a new member of the langbeinite family". Acta Crystallographica Section E 62 (6): m138–m139. doi:10.1107/S1600536806019490. Bibcode2006AcCrE..62R.138S. 
  58. 58.0 58.1 58.2 Swanson et al. 1969, p. 52
  59. Hikita, T. (2005). "43B-6 (NH4)2Mn2(SO4)3-(NH4)2Mn2(SeO4)3". (NH4)2SO4 family ... K3BiCl6·2KCl·KH3F4. Landolt-Börnstein - Group III Condensed Matter. 36B2. pp. 1–3. doi:10.1007/10552342_84. ISBN 9783540313533. 
  60. 60.0 60.1 60.2 Swanson et al. 1969, p. 76
  61. Kasatkin, Anatoly V.; Plášil, Jakub; Škoda, Radek; Campostrini, Italo; Chukanov, Nikita V.; Agakhanov, Atali A.; Karpenko, Vladimir Yu.; Belakovskiy, Dmitriy I. (14 December 2020). "Ferroefremovite, (NH4)2Fe2+2(SO4)3, a new mineral from Solfatara di Pozzuoli, Campania, Italy". The Canadian Mineralogist 59: 59–68. doi:10.3749/canmin.1900085. 
  62. Swanson et al. 1968, p. 35
  63. 63.0 63.1 63.2 Swanson et al. 1970, p. 59
  64. Swanson et al. 1970, p. 85
  65. 65.0 65.1 65.2 Jayakumar, V. S.; I. Hubert Joe; G. Aruldhas (1995). "IR and single crystal Raman spectra of langbeinities M2Ni2(SO4)3 (M = NH4, K)". Ferroelectrics 165 (1): 307–318. doi:10.1080/00150199508228311. Bibcode1995Fer...165..307J. 
  66. 66.0 66.1 66.2 Swanson et al. 1968, p. 46
  67. 67.0 67.1 67.2 Swanson et al. 1970, p. 72
  68. 68.0 68.1 Swanson et al. 1968, p. 54
  69. Swanson et al. 1969, p. 34
  70. 70.0 70.1 70.2 Swanson et al. 1969, p. 45
  71. Swanson et al. 1970, p. 83
  72. 72.00 72.01 72.02 72.03 72.04 72.05 72.06 72.07 72.08 72.09 72.10 72.11 72.12 72.13 72.14 72.15 72.16 72.17 72.18 72.19 72.20 72.21 72.22 72.23 72.24 72.25 72.26 72.27 72.28 72.29 72.30 72.31 72.32 72.33 72.34 72.35 72.36 72.37 72.38 72.39 Le Fur, Y.; Aléonard, S (August 1969). "Etude d'orthofluoroberyllates MeI2MeII2(BeF4)3 de structure langbeinite". Materials Research Bulletin 4 (8): 601–615. doi:10.1016/0025-5408(69)90121-4. 
  73. Shen, Y.; Yang, Y.; Zhao, S.; Li, X.; Ding, Q.; Li, Y.; Liu, S.; Lin, Z. et al. (2018). "CCDC Number: 1862371" (in en). Inorganic Chemistry 57 (21): 13087–13091. doi:10.1021/acs.inorgchem.8b02491. PMID 30299091. https://www.ccdc.cam.ac.uk/structures/search?pid=ccdc:1862371&issn=&id=doi:10.1021/acs.inorgchem.8b02491&sid=ACS. 
  74. Shen, Yaoguo; Liu, Zhiqun; Yu, Hualiang; Zhou, Bi (April 2020). "Aliovalent-substituted synthesis for a non-centrosymmetric phosphate with enhanced nonlinear-optical response". Journal of Solid State Chemistry 288: 121361. doi:10.1016/j.jssc.2020.121361. Bibcode2020JSSCh.28821361S. 
  75. Fu, Yun-Long; Xu, Zhi-Wei; Ren, Jia-Lin; Ng, Seik Weng (2005). "Langbeinite-type mixed-valence (NH4)(H3O)Ti[III]Ti[IV](PO4)3". Acta Crystallographica Section E 61 (8): i158–i159. doi:10.1107/S1600536805021392. 
  76. 76.0 76.1 76.2 Leclaire, A.; Benmoussa, A.; Borel, M. M.; Grandin, A.; Raveau, B. (February 1989). "K2−xTi2(PO4)3 with 0 ≤ x ≤ 0.5: A mixed-valence nonstoichiometric titanophosphate with the langbeinite structure". Journal of Solid State Chemistry 78 (2): 227–231. doi:10.1016/0022-4596(89)90101-1. Bibcode1989JSSCh..78..227L. 
  77. 77.0 77.1 Isasi, J (2 August 2000). "Synthesis, structure and conductivity study of new monovalent phosphates with the langbeinite structure". Solid State Ionics 133 (3–4): 303–313. doi:10.1016/S0167-2738(00)00677-9. 
  78. 78.0 78.1 Ogorodnyk, Ivan V.; Zatovsky, Igor V.; Slobodyanik, Nikolay S.; Baumer, Vyacheslav N.; Shishkin, Oleg V. (November 2006). "Synthesis, structure and magnetic properties of new phosphates K2Mn0.5Ti1.5(PO4)3 and K2Co0.5Ti1.5(PO4)3 with the langbeinite structure". Journal of Solid State Chemistry 179 (11): 3461–3466. doi:10.1016/j.jssc.2006.07.015. Bibcode2006JSSCh.179.3461O. 
  79. Strutynska, Nataliia Yu.; Bondarenko, Marina A.; Ogorodnyk, Ivan V.; Zatovsky, Igor V.; Slobodyanik, Nikolay S.; Baumer, Vyacheslav N.; Puzan, Anna N. (May 2015). "Interaction in the molten system Rb2 O-P2 O5 -TiO -NiO. Crystal structure of the langbeinite-related Rb2Ni0.5Ti1.5(PO4)". Crystal Research and Technology 50 (7): 549–555. doi:10.1002/crat.201500050. 
  80. Zhao, Dan; Zhang, Hao; Huang, Shu-Ping; Zhang, Wei-Long; Yang, Song-Lin; Cheng, Wen-Dan (2009). "Crystal and band structure of K2AlTi(PO4)3 with the langbeinite-type structure". Journal of Alloys and Compounds 477 (1–2): 795–799. doi:10.1016/j.jallcom.2008.10.124. 
  81. Ding, Jimin; Zhu, Pengfei; Li, Ziqing; Wang, Zhenyan; Ai, Li; Zhao, Jianfu; Yu, Fapeng; Duan, Xiulan et al. (July 2021). "Synthesis, electronic structure and upconversion photoluminescence of langbeinite-type K2TiYb(PO4)3 microcrystals" (in en). Optik 244: 167549. doi:10.1016/j.ijleo.2021.167549. Bibcode2021Optik.244p7549D. https://linkinghub.elsevier.com/retrieve/pii/S0030402621011645. 
  82. 82.0 82.1 82.2 Chen, Shuang; Hoffmann, Stefan; Weichert, Katja; Maier, Joachim; Prots, Yurii; Zhao, Jing-Tai; Kniep, Rüdiger (2011). "Li(H2O)2−x[Zr2(PO4)3]: A Li-Filled Langbeinite Variant (x= 0) as a Precursor for a Metastable Dehydrated Phase (x= 2)". Chemistry of Materials 23 (6): 1601–1606. doi:10.1021/cm103487w. 
  83. Ogorodnyk, I. V.; Zatovsky, I. V.; Baumer, V. N.; Slobodyanik, N. S.; Shishkin, O. V. (2007). "Synthesis and crystal structure of langbeinite related mixed-metal phosphates K1.822Nd0.822Zr1.178(PO4)3 and K2LuZr(PO4)3". Crystal Research and Technology 42 (11): 1076–1081. doi:10.1002/crat.200710961. Bibcode2007CryRT..42.1076O. 
  84. 84.0 84.1 Trubach, I. G.; Beskrovnyi, A. I.; Orlova, A. I.; Orlova, V. A.; Kurazhkovskaya, V. S. (2004). "Synthesis and structural study of Rb2FeZr(PO4)3 phosphate with langbeinite structure". Crystallography Reports 49 (6): 895–898. doi:10.1134/1.1828132. Bibcode2004CryRp..49..895T. 
  85. Orlova, Albina I.; Trubach, Ilya G.; Kurazhkovskaya, Victoria S.; Pertierra, Pilar (July 2003). "Synthesis, characterization, and structural study of K2FeZrP3O12 with the langbeinite structure". Journal of Solid State Chemistry 173 (2): 314–318. doi:10.1016/S0022-4596(03)00101-4. Bibcode2003JSSCh.173..314O. 
  86. 86.0 86.1 Asabina, E. A.; Pet'kov, V. I.; Gobechiya, E. R.; Kabalov, Yu. K.; Pokholok, K. V.; Kurazhkovskaya, V. S. (19 May 2009). "Synthesis and crystal structure of phosphates A2FeTi(PO4)3 (A = Na, Rb)". Russian Journal of Inorganic Chemistry 53 (1): 40–47. doi:10.1134/S0036023608010075. 
  87. 87.0 87.1 Wulff, H.; Guth, U.; Loescher, B. (10 January 2013). "The Crystal Structure of K2REZr(PO4)3(RE = Y, Gd) Isotypic with Langbeinite". Powder Diffraction 7 (2): 103–106. doi:10.1017/S0885715600018339. Bibcode1992PDiff...7..103W. 
  88. Ogorodnyk, Ivan V.; Zatovsky, Igor V.; Slobodyanik, Nikolay S. (2009). "Rietveld refinement of langbeinite-type K2YHf(PO4)3". Acta Crystallographica Section E 65 (8): i63–i64. doi:10.1107/S1600536809027573. PMID 21583298. Bibcode2009AcCrE..65I..63O. 
  89. 89.0 89.1 Chen, Shuang; Hoffmann, Stefan; Borrmann, Horst; Kniep, Rüdiger (2011). "Crystal structure of a lithium-filled langbeinite variant, Li(H2O)2[Hf2(PO4)3"]. Z. Kristallogr. 226 (3): 299–300. doi:10.1524/ncrs.2011.0132. http://ftp.oldenbourg.de/pub/download/frei/ncs/226-3/710067.pdf. Retrieved 30 June 2013. 
  90. Losilla, E (2 September 1998). "NASICON to scandium wolframate transition in Li1+xMxHf2-x(PO4)3 (M=Cr, Fe): structure and ionic conductivity". Solid State Ionics 112 (1–2): 53–62. doi:10.1016/S0167-2738(98)00207-0. 
  91. 91.0 91.1 91.2 91.3 Orlova, A. I.; Koryttseva, A. K.; Bortsova, E. V.; Nagornova, S. V.; Kazantsev, G. N.; Samoilov, S. G.; Bankrashkov, A. V.; Kurazhkovskaya, V. S. (2006). "Crystallochemical modeling, synthesis, and study of new tantalum and niobium phosphates with a framework structure". Crystallography Reports 51 (3): 357–365. doi:10.1134/S1063774506030011. Bibcode2006CryRp..51..357O. 
  92. Xue, Ya-Li; Zhao, Dan; Zhang, Shi-Rui; Li, Ya-Nan; Fan, Yan-Ping (30 January 2019). "A new disordered langbeinite-type compound, K2Tb1.5Ta0.5P3O12, and Eu3+ -doped multicolour light-emitting properties". Acta Crystallographica Section C 75 (2): 213–220. doi:10.1107/S2053229619000998. PMID 30720461. 
  93. 93.00 93.01 93.02 93.03 93.04 93.05 93.06 93.07 93.08 93.09 93.10 93.11 Koryttseva, A. K.; Orlova, A. I.; Nagornova, S. V.; Sedova, N. A.; Beskrovnyi, A. I. (April 2022). "Preparation and Structure of New Orthophosphates Isostructural with the Mineral Langbeinite: A2R1.5Ta0.5(PO4)3 (A = K, Rb; R = Ga, Gd, Dy, Ho, Er, Yb)" (in en). Inorganic Materials 58 (4): 356–363. doi:10.1134/S0020168522040069. ISSN 0020-1685. https://link.springer.com/10.1134/S0020168522040069. 
  94. 94.0 94.1 94.2 94.3 Orlova, A. I.; Kitaev, D. B. (2005). "Anhydrous Lanthanide and Actinide(III) and (IV) Orthophosphates Me_m(PO4)_n. Synthesis, Crystallization, Structure, and Properties". Radiochemistry 47 (1): 14–30. doi:10.1007/s11137-005-0041-6. 
  95. Kumar, Sathasivam Pratheep; Gopal, Buvaneswari (2014). "Synthesis and leachability study of a new cesium immobilized langbeinite phosphate: KCsFeZrP3O12". Journal of Alloys and Compounds 615: 419–423. doi:10.1016/j.jallcom.2014.06.192. ISSN 0925-8388. 
  96. 96.0 96.1 96.2 El Hafid, Hassan; Velázquez, Matias; El Jazouli, Abdelaziz; Wattiaux, Alain; Carlier, Dany; Decourt, Rodolphe; couzi, Michel; Goldner, Philippe et al. (2014). "Magnetic, Mössbauer and optical spectroscopic properties of the AFe3O(PO4)3 (A=Ca,Sr,Pb) series of powder compounds". Solid State Sciences 36: 52–61. doi:10.1016/j.solidstatesciences.2014.07.011. ISSN 1293-2558. Bibcode2014SSSci..36...52E. 
  97. Hidouri, Mourad; López, María Luisa; Pico, Carlos; Wattiaux, Alain; Amara, Mongi Ben (December 2012). "Synthesis and characterization of a new iron phosphate KSrFe2(PO4)3 with a langbeinite type structure". Journal of Molecular Structure 1030: 145–148. doi:10.1016/j.molstruc.2012.04.002. Bibcode2012JMoSt1030..145H. 
  98. Shpanchenko, R. V.; Lapshina, O. A.; Antipov, E. V.; Hadermann, J.; Kaul, E. E.; Geibel, C. (2005). "New lead vanadium phosphate with langbeinite-typestructure: Pb1.5V2(PO4)3". Materials Research Bulletin 40 (9): 1569–1576. doi:10.1016/j.materresbull.2005.04.037. https://www.academia.edu/4306164. 
  99. 99.0 99.1 99.2 99.3 Rangan, K. Kasthuri; Gopalakrishnan, J. (March 1994). "New Titanium-Vanadium Phosphates of Nasicon and Langbeinite Structures, and Differences between the Two Structures toward Deintercalation of Alkali Metal". Journal of Solid State Chemistry 109 (1): 116–121. doi:10.1006/jssc.1994.1080. Bibcode1994JSSCh.109..116R. 
  100. David, Rénald; Kabbour, Houria; Filimonov, Dmitry; Huvé, Marielle; Pautrat, Alain; Mentré, Olivier (2014). "Reversible Topochemical Exsolution of Iron in BaFe2+2(PO4)2". Angewandte Chemie 126 (49): 13583–13588. doi:10.1002/ange.201404476. ISSN 0044-8249. Bibcode2014AngCh.12613583D. 
  101. Pet'kov, V. I.; Markin, A. V.; Alekseev, A. A.; Smirnova, N. N. (3 February 2018). "Heat capacity measurements on Ba1.5Fe2(PO4)3 and its thermodynamic functions". Journal of Thermal Analysis and Calorimetry 132: 353–364. doi:10.1007/s10973-017-6925-9. 
  102. Jiao, Mengmeng; Lv, Wenzhen; Lv, Wei; Zhao, Qi; Shao, Baiqi; You, Hongpeng (14 January 2015). "Optical Properties and Energy Transfer of Novel KSrSc2(PO4)3:Ce3+/Eu2+/Tb3+ Phosphor for White Light Emitting Diodes". Dalton Trans. 44 (9): 4080–4087. doi:10.1039/C4DT03906H. PMID 25623365. 
  103. Strutynska, Nataliia Yu.; Bondarenko, Marina A.; Ogorodnyk, Ivan V.; Baumer, Vyacheslav N.; Slobodyanik, Nikolay S. (7 February 2015). "Crystal structure of langbeinite-related RbKCoTi(PO4)3". Acta Crystallographica Section E 71 (3): 251–253. doi:10.1107/S2056989015001826. PMID 25844179. 
  104. 104.0 104.1 104.2 Chornii, Vitalii; Hizhnyi, Yuriy; Nedilko, Sergiy G.; Terebilenko, Kateryna; Zatovsky, I.; Ogorodnyk, Ivan; Boyko, Volodymyr (June 2015). "Synthesis, Crystal Structure, Luminescence and Electronic Band Structure of K2BiZr(PO4)3 Phosphate Compound". Solid State Phenomena 230: 55–61. doi:10.4028/www.scientific.net/SSP.230.55. 
  105. Jiao, Mengmeng; Lü, Wei; Shao, Baiqi; Zhao, Lingfei; You, Hongpeng (20 July 2015). "Synthesis, Structure, and Photoluminescence Properties of Novel KBaSc2(PO4)3 :Ce/Eu/Tb Phosphors for White-Light-Emitting Diodes". ChemPhysChem 16 (12): 2663–2669. doi:10.1002/cphc.201500387. PMID 26202348. 
  106. Wu, Di; Si, Jiayong; Tang, Jiamin; Li, Guihua; Cai, Gemei (September 2022). "Structure and tunable luminescence of Tm3+/Dy3+ doped KBaIn2(PO4)3 phosphors with high thermal stability". Journal of Luminescence 252: 119291. doi:10.1016/j.jlumin.2022.119291. Bibcode2022JLum..252k9291W. 
  107. Battle, Peter D.; Cheetham, Anthony K.; Harrison, William T. A.; Long, Gary J. (March 1986). "The crystal structure and magnetic properties of the synthetic langbeinite KBaFe2(PO4)3". Journal of Solid State Chemistry 62 (1): 16–25. doi:10.1016/0022-4596(86)90211-2. Bibcode1986JSSCh..62...16B. 
  108. Battle, P. D.; Gibb, T. C.; Nixon, S.; Harrison, W. T. A. (July 1988). "The magnetic properties of the synthetic langbeinite KBaCr2(PO4)3". Journal of Solid State Chemistry 75 (1): 21–29. doi:10.1016/0022-4596(88)90299-x. Bibcode1988JSSCh..75...21B. 
  109. Pet'kov, V. I.; Asabina, E. A.; Markin, A. V.; Alekseev, A. A.; Smirnova, N. N. (22 February 2016). "Thermodynamic investigation of Rb2FeTi(PO4)3 phosphate of langbeinite structure". Journal of Thermal Analysis and Calorimetry 124 (3): 1535–1544. doi:10.1007/s10973-016-5319-8. 
  110. 110.00 110.01 110.02 110.03 110.04 110.05 110.06 110.07 110.08 110.09 110.10 Pet'kov, V. I.; Alekseev, A. A.; Asabina, E. A.; Borovikova, E. Yu.; Koval'skii, A. M. (6 August 2017). "Synthesis, structure formation, and thermal expansion of A+M2+MgE4+(PO4)3". Russian Journal of Inorganic Chemistry 62 (7): 870–878. doi:10.1134/S0036023617070178. 
  111. Zhang, G.X.; Zhang, J.; Liu, Y.J.; Si, J.Y.; Tao, X.M.; Cai, G.M. (May 2019). "Structure and luminescence properties of multicolor phosphors with excellent thermal stability based on a new phosphate Ba3In4(PO4)6". Journal of Alloys and Compounds 797: 775–785. doi:10.1016/j.jallcom.2019.05.059. 
  112. Droß, Thomas; Glaum, Robert (20 March 2004). "The langbeinite-type barium vanadium(III) orthophosphate, Ba3V4(PO4) 6". Acta Crystallographica Section E 60 (4): i58–i60. doi:10.1107/S1600536804005689. Bibcode2004AcCrE..60I..58D. 
  113. 113.0 113.1 Balaji, Daneshwaran; Mandlimath, Triveni Rajashekhar; Chen, Jie; Matsushita, Yoshitaka; Kumar, Sathasivam Pratheep (2020-09-02). "Langbeinite Phosphates KPbM2(PO4)3 (M = Cr, Fe): Synthesis, Structure, Thermal Expansion, and Magnetic Properties Investigation" (in en). Inorganic Chemistry 59 (18): 13245–13253. doi:10.1021/acs.inorgchem.0c01597. ISSN 0020-1669. PMID 32878438. 
  114. Zhou, Liang; Butenko, Denys S.; Ogorodnyk, Ivan V.; Klyui, Nickolai I.; Zatovsky, Igor V. (2020-10-01). "Rietveld refinement of the langbeinite-type phosphate K2Ni0.5Hf1.5(PO4)3". Acta Crystallographica Section E 76 (10): 1634–1637. doi:10.1107/S2056989020012062. ISSN 2056-9890. PMID 33117578. PMC 7534254. Bibcode2020AcCrE..76.1634Z. http://scripts.iucr.org/cgi-bin/paper?S2056989020012062. 
  115. 115.0 115.1 Balaji, Daneshwaran; Mandlimath, Triveni Rajashekhar; Kumar, Sathasivam Pratheep (February 2020). "Influence of tin substitution on negative thermal expansion of K2Zr2-xSnxP2SiO12 (x = 0 - 2) phosphosilicates ceramics". Ceramics International 46 (9): 13877–13885. doi:10.1016/j.ceramint.2020.02.181. 
  116. 116.0 116.1 Balaji, Daneshwaran; Kumar, Sathasivam Pratheep (July 2021). "Langbeinite phosphosilicates K2-xCsxZr2P2SiO12 (x = 0, 0.5, 1.0, 1.5, 2.0) for cesium encapsulation; synthesis, chemical durability and thermal expansion study" (in en). Ceramics International 47 (20): 28951–28959. doi:10.1016/j.ceramint.2021.07.055. https://linkinghub.elsevier.com/retrieve/pii/S0272884221020824. 
  117. 117.0 117.1 117.2 117.3 117.4 Kumar, Sathasivam Pratheep; Gopal, Buvaneswari (February 2016). "New rare earth langbeinite phosphosilicates KBaREEZrP 2 SiO 12 (REE: La, Nd, Sm, Eu, Gd, Dy) for lanthanide comprising nuclear waste storage" (in en). Journal of Alloys and Compounds 657: 422–429. doi:10.1016/j.jallcom.2015.10.088. https://linkinghub.elsevier.com/retrieve/pii/S092583881531344X. 
  118. Kanunov, A. E.; Asabina, E. A.; Orlova, A. I. (January 2016). "Preparation and X-ray diffraction study of phosphate sulfates M2MgTi(SO4)(PO4)2" (in en). Russian Journal of General Chemistry 86 (1): 18–25. doi:10.1134/S1070363216010047. ISSN 1070-3632. http://link.springer.com/10.1134/S1070363216010047. 
  119. 119.0 119.1 119.2 Slobodyanik, Nikolay S.; Terebilenko, Kateryna V.; Ogorodnyk, Ivan V.; Zatovsky, Igor V.; Seredyuk, Maksym; Baumer, Vyacheslav N.; Gütlich, Philipp (2012-02-06). "K 2 M III 2 (M VI O 4 )(PO 4 ) 2 (M III = Fe, Sc; M VI = Mo, W), Novel Members of the Lagbeinite-Related Family: Synthesis, Structure, and Magnetic Properties" (in en). Inorganic Chemistry 51 (3): 1380–1385. doi:10.1021/ic201575v. ISSN 0020-1669. PMID 22260084. https://pubs.acs.org/doi/10.1021/ic201575v. 
  120. 120.0 120.1 120.2 Nabar, M. A.; Phanasgaonkar, D. S. (1 October 1980). "Preparation and X-ray powder diffraction studies of triple orthovanadates having langbeinite structure". Journal of Applied Crystallography 13 (5): 450–451. doi:10.1107/s0021889880012514. Bibcode1980JApCr..13..450N. 
  121. Harrison, William T. A. (17 June 2010). "K2ScSn(AsO4)3 : an arsenate-containing langbeinite". Acta Crystallographica Section C 66 (7): i82–i84. doi:10.1107/S0108270110021670. PMID 20603547. Bibcode2010AcCrC..66I..82H. http://repositorio.unicamp.br/jspui/handle/REPOSIP/198934. 
  122. Rouse, Jessica (January 2010). "Compound IX:hydrated ammonium zirconium arsenate" (Thesis). Synthesis and Characterisation of Lanthanide and Other Inorganic Framework Materials. University of Southampton, Faculty of Engineering, Science and Mathematics, School of Chemistry. p. 127. http://eprints.soton.ac.uk/173801/1.hasCoversheetVersion/FINAL_AH_CHECK.pdf. Retrieved 10 November 2015. 
  123. Martínez, M. L.; Rodriguez, A.; Mestres, L.; Solans, X.; Bocanegra, E. H. (November 1990). "Synthesis, crystal structure, and thermal studies of (NH4)2Cd2(SeO4)3·3H2O". Journal of Solid State Chemistry 89 (1): 88–93. doi:10.1016/0022-4596(90)90297-B. Bibcode1990JSSCh..89...88M. 
  124. Kohler, K.; Franke, W. (1 August 1964). "(NH4)2Mn2(SeO4)3, Ein Doppelselenat mit Langbeiniestruktur" (in de). Acta Crystallographica 17 (8): 1088–1089. doi:10.1107/s0365110x64002833. Bibcode1964AcCry..17.1088K. 
  125. Tsyrenova, G. D.; N. N. Pavlova (2011). "Synthesis, structure, and electrical and acoustic properties of Cs2Cd2(MoO4)3". Inorganic Materials 47 (7): 786–790. doi:10.1134/S0020168511070235. 
  126. Yudin, Vasiliy N.; Zolotova, Evgeniya S.; Solodovnikov, Sergey F.; Solodovnikova, Zoya A.; Korolkov, Iliya V.; Stefanovich, Sergey Yu.; Kuchumov, Boris M. (23 November 2018). "Synthesis, structure and conductivity of alluaudite-related phases in the Na2MoO4-Cs2MoO4-CoMoO4 system". European Journal of Inorganic Chemistry 2019 (2): 277–286. doi:10.1002/ejic.201801307. 
  127. Zolotova, E. S.; Solodovnikova, Z. A.; Ayupov, B. M.; Solodovnikov, S. F. (16 August 2011). "Phase formation in the Li2MoO4-A2MoO4-NiMoO4 (A = K, Rb, Cs) systems, the crystal structure of Cs2Ni2(MoO4)3, and color characteristics of alkali-metal nickel molybdates". Russian Journal of Inorganic Chemistry 56 (8): 1216–1221. doi:10.1134/S0036023611080298. 
  128. Yu, Yang; Liu, Dan; Hu, Wei-wei; Li, Jia; Peng, Yu; Zhou, Qi; Yang, Fen; Li, Guang-hua et al. (2012). "Synthesis, Structure and Characterization of Three Metal Molybdate Hydrates: Fe(H2O)2(MoO4)2·H3O, NaCo2(MoO4)2(H3O2) and Mn2(MoO4)3·2H3O". Chem Res. Chinese Universities 28 (2): 186–190. http://www.cjcu.jlu.edu.cn/hxyj/EN/article/downloadArticleFile.do?attachType=PDF&id=15425. Retrieved 10 November 2015. 
  129. Gulyaeva, Oksana A.; Solodovnikova, Zoya A.; Solodovnikov, Sergey F.; Yudin, Vasiliy N.; Zolotova, Evgeniya S.; Komarov, Vladislav Yu. (April 2019). "Subsolidus phase relations and structures of solid solutions in the systems K2MoO4–Na2MoO4–MMoO4 (M = Mn, Zn)". Journal of Solid State Chemistry 272: 148–156. doi:10.1016/j.jssc.2019.02.010. Bibcode2019JSSCh.272..148G. 
  130. 130.0 130.1 Han, Shujuan; Wang, Ying; Jing, Qun; Wu, Hongping; Pan, Shilie; Yang, Zhihua (2015). "Effect of the cation size on the framework structures of magnesium tungstate, A4Mg(WO4)3 (A = Na, K), R2Mg2 (WO4)3 (R = Rb, Cs)". Dalton Trans. 44 (12): 5810–5817. doi:10.1039/c5dt00332f. PMID 25715112. 
  131. Swain, Diptikanta; T. N. Guru Row (2005). "Dirubidium tricadmium tetrakis(sulfate) pentahydrate". Acta Crystallographica Section E 61 (8): i163–i164. doi:10.1107/S1600536805021252. Bibcode2005AcCrE..61I.163S. http://eprints.iisc.ernet.in/3645/1/A156.pdf. 
  132. Yamada, N.; Tomoyuki Hikita; Kazuhiro Yamada (1981). "Pyroelectric properties of langbeinite-type K2Zn2(SO4)3". Ferroelectrics 33 (1): 59–61. doi:10.1080/00150198108008070. Bibcode1981Fer....33...59Y. 
  133. Kohler, K.; W. Franke (1964). "(NH4)2Mn2(SeO4)3, Ein Doppelselenat mit Langbeiniestruktur". Acta Crystallographica 17 (8): 1088–1089. doi:10.1107/S0365110X64002833. Bibcode1964AcCry..17.1088K. 
  134. Orlova, A. I.; V. A. Orlova; M. P. Orlova; D. M. Bykov; S. V. Stefanovskii; O. I. Stefanovskaya; B. S. Nikonov (2006). "The crystal-chemical principle in designing mineral-like phosphate ceramics for immobilization of radioactive waste". Radiochemistry 48 (4): 330–339. doi:10.1134/S1066362206040035. 
  135. Slobodyanik, M. S.; N. S. Slobodyanik; K. V. Terebilenko; I. V. Ogorodnyk; I. V. Zatovsky; M. Seredyuk; V. N. Baumer; P. Gütlich (2012). "K2MIII2(MVIO4)(PO4)2 (MIII = Fe, Sc; MVI = Mo, W), Novel Members of the Lagbeinite-Related Family: Synthesis, Structure, and Magnetic Properties". Inorg. Chem. 51 (5): 1380–1385. doi:10.1021/ic201575v. PMID 22260084.