Chemistry:Secoisolariciresinol

From HandWiki
Revision as of 19:14, 5 February 2024 by Steve2012 (talk | contribs) (update)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Secoisolariciresinol
Chemical structure of secoisolariciresinol
Names
IUPAC name
(8R,8′R)-3,3′-Dimethoxylignane-4,4′,9,9′-tetrol
Systematic IUPAC name
(2R,3R)-2,3-Bis[(4-hydroxy-3-methoxyphenyl)methyl]butane-1,4-diol
Other names
(−)-Secoisolariciresinol
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
EC Number
  • 249-599-2
KEGG
UNII
Properties
C20H26O6
Molar mass 362.422 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references

Secoisolariciresinol is an organic compound. It is classified as a lignan, i.e., a type of phenylpropanoid. It is present in some cereals, such as rye, and together with matairesinol has attracted much attention for its beneficial nutritional effects.[1]

Occurrence

The water extract of silver fir wood contains more than 5% of secoisolariciresinol.[2] It is also present in nettle brew.[3] Its content in flaxseed (Linum usitatıssimum) was found to be 0.3%,[4] which is the highest known content in food.

Biomedical aspects

In the intestine the gut microflora can form secoisolariciresinol from the secoisolariciresinol diglucoside and it can then be further transformed into the enterolignan enterodiol. Epidemiological studies showed associations between secoisolariciresinol intake and decreased risk of cardiovascular disease are promising, but they are yet not well established, perhaps due to low lignan intakes in habitual Western diets. At the higher doses used in intervention studies, associations were more evident.[5][6]

Glycosides

References

  1. Seibel, Wilfried; Kim Chung, Okkyung; Weipert, Dorian; Park, Seok-Ho (2006). "Ullmann's Encyclopedia of Industrial Chemistry". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a06_093.pub2. 
  2. Tavčar Benković, Eva; Žigon, Dušan; Mihailović, Vladimir; Petelinc, Tanja; Jamnik, Polona; Kreft, Samo (2017). "Identification, in vitro and in vivo Antioxidant Activity, and Gastrointestinal Stability of Lignans from Silver Fir (Abies alba) Wood Extract". Journal of Wood Chemistry and Technology 37 (6): 467. doi:10.1080/02773813.2017.1340958. 
  3. Francišković, Marina; Gonzalez-Pérez, Raquel; Orčić, Dejan; Sánchez de Medina, Fermín; Martínez-Augustin, Olga; Svirčev, Emilija; Simin, Nataša; Mimica-Dukić, Neda (August 2017). "Chemical Composition and Immuno-Modulatory Effects of Urtica dioica L. (Stinging Nettle) Extracts". Phytotherapy Research 31 (8): 1183–1191. doi:10.1002/ptr.5836. ISSN 1099-1573. PMID 28544187. 
  4. Milder, Ivon E. J.; Arts, Ilja C. W.; Putte, Betty van de; Venema, Dini P.; Hollman, Peter C. H. (2005). "Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol" (in en). British Journal of Nutrition 93 (3): 393–402. doi:10.1079/bjn20051371. ISSN 1475-2662. PMID 15877880. 
  5. Peterson, Julia; Dwyer, Johanna; Adlercreutz, Herman; Scalbert, Augustin; Jacques, Paul; McCullough, Marjorie L. (2010-10-01). "Dietary lignans: physiology and potential for cardiovascular disease risk reduction" (in en). Nutrition Reviews 68 (10): 571–603. doi:10.1111/j.1753-4887.2010.00319.x. ISSN 0029-6643. PMID 20883417. 
  6. Pan, An; Yu, Danxia; Demark-Wahnefried, Wendy; Franco, Oscar H; Lin, Xu (2009-08-01). "Meta-analysis of the effects of flaxseed interventions on blood lipids" (in en). The American Journal of Clinical Nutrition 90 (2): 288–297. doi:10.3945/ajcn.2009.27469. ISSN 0002-9165. PMID 19515737.