Chemistry:Silicide carbide
Silicide carbides or carbide silicides are compounds containing anions composed of silicide (Si4−) and carbide (C4−) or clusters therof. They can be considered as mixed anion compounds or intermetallic compounds, as silicon could be considered as a semimetal.
Related compounds include the germanide carbides, phosphide silicides, boride carbides and nitride carbides. Other related compounds may contain more condensed anion combinations such as the carbidonitridosilicates with C(SiN3)4 with N bridging between two silicon atoms.[1]
Production
Silicide carbide compounds can be made by heating silicon, graphite, and metal together. It is important to exclude oxygen before and during the reaction.[2] The flux method involves a reaction in a molten metal. Gallium is suitable, because it dissolves carbon and silicon, but does not react with them.[3]
Properties
Silicide carbides are a kind of ceramic, yet they also have metallic properties. They are not as brittle as most ceramics, but are stiffer than metals. They have high melting temperatures.[4]
In air silicide carbide compounds are stable, and are hardly affected by water. The appearance is often metallic grey. When powdered the colour is dark grey.[5]
When ErFe2SiC is dissolved in acid, mostly methane is produced, but the products include some hydrocarbons with two and three carbon atoms.[5]
The lanthanide contraction is evident with the cell sizes for rare earth element silicide carbides.[5]
List
formula | system | space group | unit cell Å | volume | density | comment | ref |
---|---|---|---|---|---|---|---|
Ti3SiC2 | hexagonal | P63/mmc | a = 3.064 c = 17.65 Z=2 | 143.5 | 4.53 | mp 2300°C | [6] |
Ti5Si3Cx | [4] | ||||||
Y3Si2C2 | orthorhombic | Cmmm | a=3.845 b=15.634 c=4.213 | 253.3 | Pauli paramagnetic
grey metallic air stable |
[7] | |
Y5Si3C1.8 | [8] | ||||||
Y1.8C2Si8(B12)3 | rhombohedral | R3m | a=10.101, c=16.441, Z=3 | 1452.7 | 1.551 | [3] | |
YCr2Si2C | tetragonal | P4/mmm | a=3.998 c=5.289 Z=1 | Pauli paramagnetic
grey metallic |
[9] | ||
YCr3Si2C | [10] | ||||||
YMn2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
YFe2SiC | orthorhombic | Cmcm | Z=4 | 270 | grey metallic
air stable |
[5] | |
YRu2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
Ba3Si4C2 | tetragonal | I4/mcm | a = 8.7693 c = 12.3885 | semiconductor; contains [Si4]4− and [C2]2− | [12] | ||
La3Si2C2 | orthorhombic | Cmmm | a=4.039,b=16.884, and c=4.506 | 307.3 | grey metallic
air stable |
[7] | |
LaCr2Si2C | tetragonal | P4/mmm | a=4.037 c=5.347 Z=1 | [9] | |||
La2Fe2Si2C | monoclinic | C2/m | Z=2 | [13] | |||
Ce3Si2C2 | orthorhombic | Cmmm | a=3.990 b=16.592 c= 4.434 | 293.5 | grey metallic
air stable ?ferromagnetic (TC=10K |
[7] | |
CeCr2Si2C | tetragonal | P4/mmm | a=4.020 c=5.284 Z=1 | grey metallic | [9] | ||
Ce2Fe2Si2C | monoclinic | C2/m | Z=2 | [13] | |||
CeMo2Si2C | [14] | ||||||
CeRu2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
Pr3Si2C2 | orthorhombic | Cmmm | a=3.967 b=16.452 c=4.399 | 287.1 | grey metallic
air stable ferromagnetic TC=25K |
[7] | |
PrCr2Si2C | tetragonal | P4/mmm | a=4.022, c = 5.352 Z=1 | 86.58 | 6.00 | grey metallic
Si-Si pair bond 2.453 Å |
[9] |
PrMo2Si2C | tetragonal | P4/mmm | a=4.2139 c=5.4093 Z=1 | 96.1 | metallic dark grey | [15] | |
PrRu2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
Nd3Si2C2 | orthorhombic | Cmmm | a=3.949 b=16.303 c=4.375 | 281.7 | grey metallic
air stable ferromagnetic TC=30K |
[7] | |
NdCr2Si2C | tetragonal | P4/mmm | a=4.026 c=5.336 Z=1 | grey metallic | [9] | ||
NdRu2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
Sm3Si2C2 | orthorhombic | Cmmm | a=3.913 b=16.073 c=4.316 | 271.4 | grey metallic
air stable antiferromagnetic TN=19K |
[7] | |
SmCr2Si2C | tetragonal | P4/mmm | a=4.011 c=5.321 Z=1 | grey metallic | [9] | ||
SmMn2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
SmFe2SiC | orthorhombic | Cmcm | Z=4 | 278 | grey metallic
air stable |
[5] | |
Sm2Fe2Si2C | monoclinic | C2/m | Z=2 | [13] | |||
SmRu2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
Gd3Si2C2 | orthorhombic | Cmmm | a=3.886 b=15.863 c=4.726 | grey metallic
air stable antiferromagnetic TN=50K |
[7] | ||
GdCr2Si2C | tetragonal | P4/mmm | a=4.007 c=5.324 Z=1 | 263.6 | grey metallic | [9] | |
GdCr3Si2C | hexagonal | P6/mmm | [10] | ||||
GdMn2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
GdFe2SiC | orthorhombic | Cmcm | Z=4 | 273 | grey metallic
air stable |
[5] | |
GdRu2SiC | orthorhombic | Cmcm | a = 3.830, b = 11.069, c = 7.157 Z=4 | 303.4 | 8.745 | silvery
air stable |
[11][16] |
Tb3Si2C2 | orthorhombic | Cmmm | a=3.854 c=15.702 c=4.236 | 256.3 | grey metallic
air stable antiferromagnetic TN=28K |
[7] | |
Tb1.8C2Si8(B12)3 | rhombohedral | R3m | a=10.1171, c=16.397, Z=3 | 1453.4 | 1.583 | [3] | |
TbCr2Si2C | tetragonal | P4/mmm | a=4.002 c=5.314 Z=1 | grey metallic | [9] | ||
TbCr3Si2C | hexagonal | P6/mmm | [10] | ||||
TbMn2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
TbFe2SiC | orthorhombic | Cmcm | Z=4 | 270 | grey metallic
air stable |
[5] | |
TbRu2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
Dy3Si2C2 | orthorhombic | Cmmm | a=3.838 b=15.611 c=4.203 | 251.8 | grey metallic
air stable antiferromagnetic TN=30K |
[7] | |
DyCr2Si2C | tetragonal | P4/mmm | a=3.999 c=5.306 Z=1 | grey metallic | [9] | ||
DyCr3Si2C | hexagonal | P6/mmm | [10] | ||||
DyMn2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
Dy2Fe2Si2C | monoclinic | C2/m | grey metallic
air stable |
[7] | |||
DyFe2SiC | orthorhombic | Cmcm | Z=4 | 269 | grey metallic
air stable |
[17] | |
DyRu2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
Ho3Si2C2 | orthorhombic | Cmmm | a=3.828 b=15.507 c=4.189 | 248.7 | grey metallic
air stable metamagnetic TN=14K |
[7] | |
HoCr2Si2C | tetragonal | P4/mmm | a=3.996 c=5.274 Z=1 | grey metallic | [9] | ||
HoCr3Si2C | hexagonal | P6/mmm | [10] | ||||
HoMn2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
HoFe2SiC | orthorhombic | Cmcm | Z=4 | 267 | grey metallic
air stable |
[5] | |
HoRu2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
Er3Si2C2 | orthorhombic | Cmmm | a=3.811 b=15.420 c=4.172 | 245.2 | grey metallic
air stable metamagnetic |
[7] | |
Er1.8C2Si8(B12)3 | rhombohedral | R3m | a=10.0994, c=16.354, Z=3 | 1444.6 | 1.619 | [3] | |
ErCr3Si2C | hexagonal | P6/mmm | [10] | ||||
ErMn2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
ErFe2SiC | orthorhombic | Cmcm | Z=4 | 265 | grey metallic
air stable |
[5] | |
ErRu2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
Tm3Si2C2 | orthorhombic | Cmmm | a=3.796, b=15.328, c=4.145 | grey metallic
air stable metamagnetic |
[7] | ||
TmCr3Si2C | hexagonal | P6/mmm | [10] | ||||
TmMn2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
TmFe2SiC | orthorhombic | Cmcm | Z=4 | 263 | grey metallic
air stable |
[5] | |
Tm2Fe2Si2C | monoclinic | C2/m | a = 10.497, b = 3.882, c = 6.646, β = 128.96° | antiferromagnetic at TN = 2.7 K
metallic |
[17] | ||
TmRu2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
LuCr3Si2C | hexagonal | P6/mmm | [10] | ||||
LuMn2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
LuFe2SiC | orthorhombic | Cmcm | Z=4 | 261 | grey metallic
air stable |
[5] | |
Lu2Fe2Si2C | monoclinic | C2/m | Pauli paramagnetic
metallic |
[17] | |||
YRe2SiC | orthorhombic | Cmcm | Z=4 | superconductor Tc ≈ 5.9 K | [11][18] | ||
Y2Re2Si2C | monoclinic | C2/m | Z=2 | [13] | |||
La2Re2Si2C | monoclinic | C2/m | Z=2 | [13] | |||
CeRe2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
Ce2Re2Si2C | monoclinic | C2/m | Z=2 | [13] | |||
PrRe2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
NdRe2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
Nd2Re2Si2C | monoclinic | C2/m | Z=2 | [13] | |||
SmRe2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
Sm2Re2Si2C | monoclinic | C2/m | Z=2 | [13] | |||
GdRe2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
Gd2Re2Si2C | monoclinic | C2/m | Z=2 | [13] | |||
TbRe2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
Tb2Re2Si2C | monoclinic | C2/m | Z=2 | [13] | |||
DyRe2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
Dy2Re2Si2C | monoclinic | C2/m | Z=2 | [13] | |||
HoRe2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
Ho2Re2Si2C | monoclinic | C2/m | Z=2 | [13] | |||
ErRe2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
Er2Re2Si2C | monoclinic | C2/m | Z=2 | [13] | |||
TmRe2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
YOs2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
LaOs2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
CeOs2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
PrOs2SiC | orthorhombic | Cmcm | a=3.9602,b=11.058,c=7.172 Z=4 | [11] | |||
NdOs2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
SmOs2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
GdOs2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
TbOs2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
DyOs2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
HoOs2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
ErOs2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
TmOs2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
ThCr2Si2C | tetragonal | [19] | |||||
ThMn2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
ThFe2SiC | orthorhombic | Cmcm | a = 3.8632, b = 10.806, c = 6.950 Z=4 | 290 | 8.79 | grey metallic
air stable |
[5] |
Th2Fe2Si2C | monoclinic | C2/m | Z=2 | [13] | |||
ThFe10SiC2-x | tetragonal | a = 10.053 and c = 6.516 | [17] | ||||
ThMo2Si2C | tetragonal | P4/mmm | a = 4.2296 c = 5.3571 Z=1 | 95.84 | superconductor Tc=2.2K | [20] | |
ThRu2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
ThRe2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
Th2Re2Si2C | monoclinic | C2/m | a=11.1782, b=4.1753, c=7.0293, β=128.721° Z=2 | [13] | |||
ThOs2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
U3Si2C2 | tetrahedral | I4/mmm | a=3.5735 c=18.882 Z=2 | 241.1 | 10.94 | C-Si bond 1.93 Å
Spin glass freeze at 28K grey metallic air stable |
[2][21] |
U20Si16C3 | hexagonal | P6/mmm | a= 10.377, c= 8.005, Z= 1 | 746.5 | 11.67 | grey metallic
air stable |
[2] |
UCr2Si2C | tetragonal | P4/mmm | a =3.983 c =5.160 Z=1 | 81.84 | 8.32 | [22] | |
UCr3Si2C | hexagonal | P6/mmm | [10] | ||||
UMn2SiC | orthorhombic | Cmcm | Z=4 | [11] | |||
UFe2SiC | orthorhombic | Cmcm | Z=4 | 268 | grey metallic
air stable |
[5] | |
U2MoSi2C | tetragonal | P4/mbm | a = 6.67 c = 4.33 | [23] | |||
UOs2SiC | orthorhombic | Cmcm | Z=4 | [11] |
References
- ↑ Höppe, Henning A.; Kotzyba, Gunter; Pöttgen, Rainer; Schnick, Wolfgang (2001-11-23). "High-temperature synthesis, crystal structure, optical properties, and magnetism of the carbidonitridosilicates Ho2[Si4N6C and Tb2[Si4N6C]"]. Journal of Materials Chemistry 11 (12): 3300–3306. doi:10.1039/b106533p. http://xlink.rsc.org/?DOI=b106533p.
- ↑ 2.0 2.1 2.2 Pöttgen, Rainer; Kaczorowski, Dariusz; Jeitschko, Wolfgang (1993). "Crystal structure, magnetic susceptibility and electrical conductivity of the uranium silicide carbides U 3 Si 2 C 2 and U 20 Si 16 C 3" (in en). J. Mater. Chem. 3 (3): 253–258. doi:10.1039/JM9930300253. ISSN 0959-9428. http://xlink.rsc.org/?DOI=JM9930300253.
- ↑ 3.0 3.1 3.2 3.3 Salvador, James R.; Bilc, Daniel; Mahanti, S. D.; Kanatzidis, Mercouri G. (2002). "Gallium Flux Synthesis of Tb3−xC2Si8(B12)3: A Novel Quaternary Boron-Rich Phase Containing B12 Icosahedra". Angewandte Chemie International Edition 41 (5): 844–846. doi:10.1002/1521-3773(20020301)41:5<844::AID-ANIE844>3.0.CO;2-R. ISSN 1521-3773. PMID 12491355. https://onlinelibrary.wiley.com/doi/abs/10.1002/1521-3773%2820020301%2941%3A5%3C844%3A%3AAID-ANIE844%3E3.0.CO%3B2-R.
- ↑ 4.0 4.1 Andrievski, R A (2017-03-31). "High-melting-point compounds: new approaches and new results". Physics-Uspekhi 60 (3): 276–289. doi:10.3367/UFNe.2016.09.037972. ISSN 1063-7869. Bibcode: 2017PhyU...60..276A. https://iopscience.iop.org/article/10.3367/UFNe.2016.09.037972.
- ↑ 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12 Witte, Anne M.; Jeitschko, Wolfgang (October 1994). "Carbides with Filled Re3B-Type Structure" (in en). Journal of Solid State Chemistry 112 (2): 232–236. doi:10.1006/jssc.1994.1297. Bibcode: 1994JSSCh.112..232W. https://linkinghub.elsevier.com/retrieve/pii/S0022459684712977.
- ↑ Nowotny, V (1971). "Strukturchemie einiger Verbindungen der Übergangsmetalle mit den elementen C, Si, Ge, Sn" (in en). Progress in Solid State Chemistry 5: 27–70. doi:10.1016/0079-6786(71)90016-1. https://linkinghub.elsevier.com/retrieve/pii/0079678671900161.
- ↑ 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 7.12 Gerdes, Martin H.; Witte, Anne M.; Jeitschko, Wolfgang; Lang, Arne; Künnen, Bernd (July 1998). "Magnetic and Electrical Properties of a New Series of Rare Earth Silicide Carbides with the CompositionR3Si2C2(R=Y, La–Nd, Sm, Gd–Tm)" (in en). Journal of Solid State Chemistry 138 (2): 201–206. doi:10.1006/jssc.1998.7772. Bibcode: 1998JSSCh.138..201G. https://linkinghub.elsevier.com/retrieve/pii/S0022459698977726.
- ↑ Button, T.W.; McColm, I.J. (February 1984). "Reaction of carbon with lanthanide silicides IV: The Y5Si3-C system" (in en). Journal of the Less Common Metals 97: 237–244. doi:10.1016/0022-5088(84)90028-6. https://linkinghub.elsevier.com/retrieve/pii/0022508884900286.
- ↑ 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 Pohlkamp, Marc W.; Jeitschko, Wolfgang (2001-11-01). "Preparation, Properties, and Crystal Structure of Quaternary Silicide Carbides RCr 2 Si 2 C (R = Y, La - Nd, Sm, Gd - Ho)" (in en). Zeitschrift für Naturforschung B 56 (11): 1143–1148. doi:10.1515/znb-2001-1108. ISSN 1865-7117. https://www.degruyter.com/document/doi/10.1515/znb-2001-1108/html.
- ↑ 10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 Lemoine, Pierric; Tobola, Janusz; Vernière, Anne; Malaman, Bernard (May 2013). "Crystal and electronic structures of the new quaternary RCr3Si2C (R=Y, Gd–Tm, Lu, U) compounds" (in en). Journal of Solid State Chemistry 201: 293–301. doi:10.1016/j.jssc.2013.03.004. Bibcode: 2013JSSCh.201..293L. https://linkinghub.elsevier.com/retrieve/pii/S0022459613001199.
- ↑ 11.00 11.01 11.02 11.03 11.04 11.05 11.06 11.07 11.08 11.09 11.10 11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20 11.21 11.22 11.23 11.24 11.25 11.26 11.27 11.28 11.29 11.30 11.31 11.32 11.33 11.34 11.35 11.36 11.37 11.38 11.39 11.40 11.41 11.42 11.43 11.44 11.45 11.46 11.47 11.48 Hüfken, Thomas; Witte, Anne M.; Jeitschko, Wolfgang (February 1999). "Quaternary Silicide CarbidesAT2SiC (A=Rare Earth Elements and Actinoids,T=Mn, Re, Ru, Os) with DyFe2SiC-Type Structure" (in en). Journal of Solid State Chemistry 142 (2): 279–287. doi:10.1006/jssc.1998.8012. Bibcode: 1999JSSCh.142..279H. https://linkinghub.elsevier.com/retrieve/pii/S0022459698980124.
- ↑ Suzuki, Yuta; Morito, Haruhiko; Yamane, Hisanori (November 2009). "Synthesis and crystal structure of Ba3Si4C2" (in en). Journal of Alloys and Compounds 486 (1–2): 70–73. doi:10.1016/j.jallcom.2009.06.157. https://linkinghub.elsevier.com/retrieve/pii/S0925838809013085.
- ↑ 13.00 13.01 13.02 13.03 13.04 13.05 13.06 13.07 13.08 13.09 13.10 13.11 13.12 13.13 13.14 Hüfken, Thomas; Witte, Anne M; Jeitschko, Wolfgang (February 1998). "Preparation and crystal structure of quaternary silicide carbides with Dy2Fe2Si2C type structure" (in en). Journal of Alloys and Compounds 266 (1–2): 158–163. doi:10.1016/S0925-8388(97)00511-2. https://linkinghub.elsevier.com/retrieve/pii/S0925838897005112.
- ↑ Paramanik, U.B.; Anupam; Burkhardt, U.; Prasad, R.; Geibel, C.; Hossain, Z. (December 2013). "Valence fluctuation in CeMo2Si2C" (in en). Journal of Alloys and Compounds 580: 435–441. doi:10.1016/j.jallcom.2013.05.169. https://linkinghub.elsevier.com/retrieve/pii/S0925838813013297.
- ↑ Dashjav, E.; Schnelle, W.; Wagner, F. R.; Kreiner, G.; Kniep, R. (April 2006). "Crystal structure of praseodymium dimolybdenum disilicide carbide, PrMo2Si2C". Zeitschrift für Kristallographie - New Crystal Structures 221 (1–4): 267–268. doi:10.1524/ncrs.2006.221.14.267. ISSN 2197-4578.
- ↑ Fickenscher, Thomas; Rayaprol, Sudhindra; Appen, Jörg von; Dronskowski, Richard; Pöttgen, Rainer; Łat̀ka, Kazimierz; Gurgul, Jacek (2008-02-01). "Crystal Structure, Chemical Bonding, and Magnetic Hyperfine Interactions in GdRu 2 SiC" (in en). Chemistry of Materials 20 (4): 1381–1389. doi:10.1021/cm7020406. ISSN 0897-4756. https://pubs.acs.org/doi/10.1021/cm7020406.
- ↑ 17.0 17.1 17.2 17.3 Pöttgen, R.; Ebel, T.; Evers, C.B.H.; Jeitschko, W. (January 1995). "Preparation, Structure Refinement, and Properties of Some Compounds with Dy2Fe2Si2C- and LaMn11C2-x-Type Structure" (in en). Journal of Solid State Chemistry 114 (1): 66–72. doi:10.1006/jssc.1995.1010. Bibcode: 1995JSSCh.114...66P. https://linkinghub.elsevier.com/retrieve/pii/S0022459685710109.
- ↑ R De Faria, L; Ferreira, P P; Correa, L E; Eleno, L T F; Torikachvili, M S; Machado, A J S (2021-06-01). "Possible multiband superconductivity in the quaternary carbide YRe 2 SiC". Superconductor Science and Technology 34 (6): 065010. doi:10.1088/1361-6668/abf7cf. ISSN 0953-2048. Bibcode: 2021SuScT..34f5010R. https://iopscience.iop.org/article/10.1088/1361-6668/abf7cf.
- ↑ Xiao, Yusen; Li, Baizhuo; Duan, Qingchen; Liu, Shaohua; Ren, Qingyong; Lin, Yiqiang; Xia, Yuanhua; Cui, YanWei et al. (2023-12-28). "ThCr 2 Si 2 C: An Antiferromagnetic Metal with a Cr 2 C Square Lattice" (in en). Inorganic Chemistry. doi:10.1021/acs.inorgchem.3c02988. ISSN 0020-1669. https://pubs.acs.org/doi/10.1021/acs.inorgchem.3c02988.
- ↑ Liu, ZiChen; Li, BaiZhuo; Xiao, YuSen; Duan, QingChen; Cui, YanWei; Mei, YuXue; Tao, Qian; Wei, ShuLi et al. (July 2021). "Superconductivity in ThMo2Si2C with Mo2C square net" (in en). Science China Physics, Mechanics & Astronomy 64 (7): 277411. doi:10.1007/s11433-021-1698-3. ISSN 1674-7348. Bibcode: 2021SCPMA..6477411L. https://link.springer.com/10.1007/s11433-021-1698-3.
- ↑ Matar, S.F.; Pöttgen, R. (October 2012). "First principles investigations of the electronic structure and chemical bonding of U3Si2C2 – A uranium silicide–carbide with the rare [SiC unit"] (in en). Chemical Physics Letters 550: 88–93. doi:10.1016/j.cplett.2012.09.014. Bibcode: 2012CPL...550...88M. https://linkinghub.elsevier.com/retrieve/pii/S0009261412010585.
- ↑ Lemoine, Pierric; Vernière, Anne; Pasturel, Mathieu; Venturini, Gérard; Malaman, Bernard (2018-03-05). "Unexpected Magnetic Ordering on the Cr Substructure in UCr 2 Si 2 C and Structural Relationships in Quaternary U-Cr-Si-C Compounds" (in en). Inorganic Chemistry 57 (5): 2546–2557. doi:10.1021/acs.inorgchem.7b02901. ISSN 0020-1669. PMID 29431434. https://pubs.acs.org/doi/10.1021/acs.inorgchem.7b02901.
- ↑ Kovarik, Libor; Devaraj, Arun; Lavender, Curt; Joshi, Vineet (June 2019). "Crystallographic and compositional analysis of impurity phase U2MoSi2C in UMo alloys" (in en). Journal of Nuclear Materials 519: 287–291. doi:10.1016/j.jnucmat.2019.03.044. Bibcode: 2019JNuM..519..287K. https://linkinghub.elsevier.com/retrieve/pii/S0022311518317239.
Original source: https://en.wikipedia.org/wiki/Silicide carbide.
Read more |