Order polynomial

From HandWiki
Revision as of 15:05, 6 February 2024 by AstroAI (talk | contribs) (simplify)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

The order polynomial is a polynomial studied in mathematics, in particular in algebraic graph theory and algebraic combinatorics. The order polynomial counts the number of order-preserving maps from a poset to a chain of length [math]\displaystyle{ n }[/math]. These order-preserving maps were first introduced by Richard P. Stanley while studying ordered structures and partitions as a Ph.D. student at Harvard University in 1971 under the guidance of Gian-Carlo Rota.

Definition

Let [math]\displaystyle{ P }[/math] be a finite poset with [math]\displaystyle{ p }[/math] elements denoted [math]\displaystyle{ x,y \in P }[/math], and let [math]\displaystyle{ [n]=\{1\lt 2\lt \ldots\lt n\} }[/math] be a chain [math]\displaystyle{ n }[/math] elements. A map [math]\displaystyle{ \phi: P \to [n] }[/math] is order-preserving if [math]\displaystyle{ x \leq y }[/math] implies [math]\displaystyle{ \phi(x) \leq \phi(y) }[/math]. The number of such maps grows polynomially with [math]\displaystyle{ n }[/math], and the function that counts their number is the order polynomial [math]\displaystyle{ \Omega(n)=\Omega(P,n) }[/math].

Similarly, we can define an order polynomial that counts the number of strictly order-preserving maps [math]\displaystyle{ \phi: P \to [n] }[/math], meaning [math]\displaystyle{ x \lt y }[/math] implies [math]\displaystyle{ \phi(x) \lt \phi(y) }[/math]. The number of such maps is the strict order polynomial [math]\displaystyle{ \Omega^{\circ}\! (n)=\Omega^{\circ}\! (P,n) }[/math].[1]

Both [math]\displaystyle{ \Omega(n) }[/math] and [math]\displaystyle{ \Omega^\circ\!(n) }[/math] have degree [math]\displaystyle{ p }[/math]. The order-preserving maps generalize the linear extensions of [math]\displaystyle{ P }[/math], the order-preserving bijections [math]\displaystyle{ \phi:P\stackrel{\sim}{\longrightarrow}[p] }[/math]. In fact, the leading coefficient of [math]\displaystyle{ \Omega(n) }[/math] and [math]\displaystyle{ \Omega^\circ\!(n) }[/math] is the number of linear extensions divided by [math]\displaystyle{ p! }[/math].

Examples

Letting [math]\displaystyle{ P }[/math] be a chain of [math]\displaystyle{ p }[/math] elements, we have

[math]\displaystyle{ \Omega(n) = \binom{n+p-1}{p} = \left(\!\left({n\atop p}\right)\!\right) }[/math] and [math]\displaystyle{ \Omega^\circ(n) = \binom{n}{p}. }[/math]

There is only one linear extension (the identity mapping), and both polynomials have leading term [math]\displaystyle{ \tfrac 1{p!}n^p }[/math].

Letting [math]\displaystyle{ P }[/math] be an antichain of [math]\displaystyle{ p }[/math] incomparable elements, we have [math]\displaystyle{ \Omega(n) =\Omega^\circ(n) = n^p }[/math]. Since any bijection [math]\displaystyle{ \phi:P\stackrel{\sim}{\longrightarrow}[p] }[/math] is (strictly) order-preserving, there are [math]\displaystyle{ p! }[/math] linear extensions, and both polynomials reduce to the leading term [math]\displaystyle{ \tfrac {p!}{p!}n^p = n^p }[/math].

Reciprocity theorem

There is a relation between strictly order-preserving maps and order-preserving maps:[2]

[math]\displaystyle{ \Omega^\circ(n) = (-1)^{|P|}\Omega(-n). }[/math]

In the case that [math]\displaystyle{ P }[/math] is a chain, this recovers the negative binomial identity. There are similar results for the chromatic polynomial and Ehrhart polynomial (see below), all special cases of Stanley's general Reciprocity Theorem.[3]

Connections with other counting polynomials

Chromatic polynomial

The chromatic polynomial [math]\displaystyle{ P(G,n) }[/math]counts the number of proper colorings of a finite graph [math]\displaystyle{ G }[/math] with [math]\displaystyle{ n }[/math] available colors. For an acyclic orientation [math]\displaystyle{ \sigma }[/math] of the edges of [math]\displaystyle{ G }[/math], there is a natural "downstream" partial order on the vertices [math]\displaystyle{ V(G) }[/math] implied by the basic relations [math]\displaystyle{ u \gt v }[/math] whenever [math]\displaystyle{ u \rightarrow v }[/math] is a directed edge of [math]\displaystyle{ \sigma }[/math]. (Thus, the Hasse diagram of the poset is a subgraph of the oriented graph [math]\displaystyle{ \sigma }[/math].) We say [math]\displaystyle{ \phi: V(G) \rightarrow [n] }[/math] is compatible with [math]\displaystyle{ \sigma }[/math] if [math]\displaystyle{ \phi }[/math] is order-preserving. Then we have

[math]\displaystyle{ P(G,n) \ =\ \sum_{\sigma} \Omega^\circ\!(\sigma,n), }[/math]

where [math]\displaystyle{ \sigma }[/math] runs over all acyclic orientations of G, considered as poset structures.[4]

Order polytope and Ehrhart polynomial

Main page: Order polytope

The order polytope associates a polytope with a partial order. For a poset [math]\displaystyle{ P }[/math] with [math]\displaystyle{ p }[/math] elements, the order polytope [math]\displaystyle{ O(P) }[/math] is the set of order-preserving maps [math]\displaystyle{ f:P\to [0,1] }[/math], where [math]\displaystyle{ [0,1] = \{ t\in\mathbb{R}\mid 0\leq t\leq 1\} }[/math] is the ordered unit interval, a continuous chain poset.[5][6] More geometrically, we may list the elements [math]\displaystyle{ P=\{x_1,\ldots,x_p\} }[/math], and identify any mapping [math]\displaystyle{ f:P\to\mathbb R }[/math] with the point [math]\displaystyle{ (f(x_1),\ldots,f(x_p))\in \mathbb{R}^{p} }[/math]; then the order polytope is the set of points [math]\displaystyle{ (t_1,\ldots,t_p)\in [0,1]^p }[/math] with [math]\displaystyle{ t_i \leq t_j }[/math] if [math]\displaystyle{ x_i \leq x_j }[/math].[7]

The Ehrhart polynomial counts the number of integer lattice points inside the dilations of a polytope. Specifically, consider the lattice [math]\displaystyle{ L=\mathbb{Z}^n }[/math] and a [math]\displaystyle{ d }[/math]-dimensional polytope [math]\displaystyle{ K\subset\mathbb{R}^d }[/math] with vertices in [math]\displaystyle{ L }[/math]; then we define

[math]\displaystyle{ L(K,n) = \#(nK \cap L), }[/math]

the number of lattice points in [math]\displaystyle{ nK }[/math], the dilation of [math]\displaystyle{ K }[/math] by a positive integer scalar [math]\displaystyle{ n }[/math]. Ehrhart showed that this is a rational polynomial of degree [math]\displaystyle{ d }[/math] in the variable [math]\displaystyle{ n }[/math], provided [math]\displaystyle{ K }[/math] has vertices in the lattice.[8]

In fact, the Ehrhart polynomial of an order polytope is equal to the order polynomial of the original poset (with a shifted argument):[7][9]

[math]\displaystyle{ L(O(P),n)\ =\ \Omega(P,n{+}1). }[/math]

This is an immediate consequence of the definitions, considering the embedding of the [math]\displaystyle{ (n{+}1) }[/math]-chain poset [math]\displaystyle{ [n{+}1]=\{0\lt 1\lt \cdots\lt n\}\subset \mathbb{R} }[/math].

References

  1. Stanley, Richard P. (1972). Ordered structures and partitions. Providence, Rhode Island: American Mathematical Society. 
  2. Stanley, Richard P. (1970). "A chromatic-like polynomial for ordered sets". Proc. Second Chapel Hill Conference on Combinatorial Mathematics and Its Appl.: 421–427. 
  3. Stanley, Richard P. (2012). "4.5.14 Reciprocity theorem for linear homogeneous diophantine equations". Enumerative combinatorics. Volume 1 (2nd ed.). New York: Cambridge University Press. ISBN 9781139206549. OCLC 777400915. 
  4. Stanley, Richard P. (1973). "Acyclic orientations of graphs". Discrete Mathematics 5 (2): 171–178. doi:10.1016/0012-365X(73)90108-8. 
  5. Karzanov, Alexander; Khachiyan, Leonid (1991). "On the conductance of Order Markov Chains". Order 8: 7–15. doi:10.1007/BF00385809. 
  6. Brightwell, Graham; Winkler, Peter (1991). "Counting linear extensions". Order 8 (3): 225–242. doi:10.1007/BF00383444. 
  7. 7.0 7.1 Stanley, Richard P. (1986). "Two poset polytopes". Discrete & Computational Geometry 1: 9–23. doi:10.1007/BF02187680. 
  8. Beck, Matthias; Robins, Sinai (2015). Computing the continuous discretely. New York: Springer. pp. 64–72. ISBN 978-1-4939-2968-9. 
  9. Linial, Nathan (1984). "The information-theoretic bound is good for merging". SIAM J. Comput. 13 (4): 795–801. doi:10.1137/0213049. 
    Kahn, Jeff; Kim, Jeong Han (1992). "Entropy and sorting". Proceedings of the twenty-fourth annual ACM symposium on Theory of computing - STOC '92. 51. 390–399. doi:10.1145/129712.129731. ISBN 0897915119.