Log-linear model

From HandWiki
Revision as of 15:53, 6 February 2024 by ScienceGen (talk | contribs) (link)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

A log-linear model is a mathematical model that takes the form of a function whose logarithm equals a linear combination of the parameters of the model, which makes it possible to apply (possibly multivariate) linear regression. That is, it has the general form

[math]\displaystyle{ \exp \left(c + \sum_{i} w_i f_i(X) \right) }[/math],

in which the fi(X) are quantities that are functions of the variable X, in general a vector of values, while c and the wi stand for the model parameters.

The term may specifically be used for:

The specific applications of log-linear models are where the output quantity lies in the range 0 to ∞, for values of the independent variables X, or more immediately, the transformed quantities fi(X) in the range −∞ to +∞. This may be contrasted to logistic models, similar to the logistic function, for which the output quantity lies in the range 0 to 1. Thus the contexts where these models are useful or realistic often depends on the range of the values being modelled.

See also

Further reading

  • Gujarati, Damodar N.; Porter, Dawn C. (2009). "How to Measure Elasticity: The Log-Linear Model". Basic Econometrics. New York: McGraw-Hill/Irwin. pp. 159–162. ISBN 978-0-07-337577-9.