Soboleva modified hyperbolic tangent
The Soboleva modified hyperbolic tangent, also known as (parametric) Soboleva modified hyperbolic tangent activation function ([P]SMHTAF),[nb 1] is a special S-shaped function based on the hyperbolic tangent, given by
Equation | Left tail control | Right tail control |
---|---|---|
[math]\displaystyle{ \operatorname{smht}x = \frac {e^{ax} - e^{-bx}} {e^{cx} + e^{-dx}}. }[/math] |
History
This function was originally proposed as "modified hyperbolic tangent"[nb 1] by Ukrainian scientist Elena V. Soboleva (Елена В. Соболева) as a utility function for multi-objective optimization and choice modelling in decision-making.[1][2][3]
Practical usage
The function has since been introduced into neural network theory and practice.[4]
It was also used in economics for modelling consumption and investment,[5] to approximate current-voltage characteristics of field-effect transistors and light-emitting diodes,[6] to design antenna feeders,[7] and analyze plasma temperatures and densities in the divertor region of fusion reactors.[8]
Sensitivity to parameters
Derivative of the function is defined by the formula:
[math]\displaystyle{ \operatorname{smht}'(x) \doteq \frac {ae^{ax} + be^{-bx}} {e^{cx} + e^{-dx}} - \operatorname{smht}(x)\frac {ce^{cx} - de^{-dx}} {e^{cx} + e^{-dx}} }[/math]
The following conditions are keeping the function limited on y-axes: a ≤ c, b ≤ d.
A family of recurrence-generated parametric Soboleva modified hyperbolic tangent activation functions (NPSMHTAF, FPSMHTAF) was studied with parameters a = c and b = d.[9] It is worth noting that in this case, the function is not sensitive to flipping the left and right-sides parameters:
Equation | Left prevalence | Right prevalence |
---|---|---|
[math]\displaystyle{ \frac {e^{ax} - e^{-bx}} {e^{ax} + e^{-bx}} = \frac {e^{bx} - e^{-ax}} {e^{bx} + e^{-ax}} }[/math] |
The function is sensitive to ratio of the denominator coefficients and often is used without coefficients in the numerator:
Equation | Basic chart | Scaled function |
---|---|---|
[math]\displaystyle{ \operatorname{ssht}x = \frac {e^{x} - e^{-x}} {e^{\alpha x} + e^{-\beta x}}. }[/math]
Extremum estimates: [math]\displaystyle{ x_{\min} = \frac {1} {2} \ln \frac {\beta-1} {\beta+1}; }[/math] [math]\displaystyle{ x_{\max} = \frac {1} {2} \ln \frac {\alpha+1} {\alpha-1}. }[/math] |
With parameters a = b = c = d = 1 the modified hyperbolic tangent function reduces to the conventional tanh(x) function, whereas for a = b = 1 and c = d = 0, the term becomes equal to sinh(x).
See also
- Activation function
- e (mathematical constant)
- Equal incircles theorem, based on sinh
- Hausdorff distance
- Inverse hyperbolic functions
- List of integrals of hyperbolic functions
- Poinsot's spirals
- Sigmoid function
Notes
References
- ↑ "The utility function in problems of structural optimization of distributed objects" (in ru). Четверта наукова конференція Харківського університету Повітряних Сил імені Івана Кожедуба, 16–17 квітня 2008 (The fourth scientific conference of the Ivan Kozhedub Kharkiv University of Air Forces, 16–17 April 2008). Kharkiv, Ukraine: Kharkiv University of Air Force (HUPS/ХУПС). 2008. p. 121.
- ↑ (in ru). Материалы XIII Международного молодежного форума «Радиоэлектро-ника и молодежь в XXI веке» (Materials of the 13th international youth forum "Radioelectronics and youth in the 21st century"). Kharkiv, Ukraine: Kharkiv National University of Radioelectronics (KNURE/ХНУРЕ). 2009. p. 247.
- ↑ (in ru)Problemy Bioniki: Respublikanskij Mežvedomstvennyj Naučno-Techničeskij Sbornik (Kharkiv National University of Radioelectronics (KNURE/ХНУРЕ)) 72 (1): 50–54. 2010. UDK 519.688: 004.896. ISSN 0555-2656. http://openarchive.nure.ua/bitstream/document/603/1/%D0%98%D0%94%D0%95%D0%9D%D0%A2%D0%98%D0%A4%D0%98%D0%9A%D0%90%D0%A6%D0%98%D0%AF%20%D0%A7%D0%90%D0%A1%D0%A2%D0%9D%D0%9E%D0%99%20%D0%9F%D0%9E%D0%9B%D0%95%D0%97%D0%9D%D0%9E%D0%A1%D0%A2%D0%98%20%D0%9C%D0%9D%D0%9E%D0%93%D0%9E%D0%A4%D0%90%D0%9A%D0%A2%D0%9E%D0%A0%D0%9D%D0%AB%D0%A5%20%D0%90%D0%9B%D0%AC%D0%A2%D0%95%D0%A0%D0%9D%D0%90%D0%A2%D0%98%D0%92%20%D0%A1%20%D0%9F%D0%9E%D0%9C%D0%9E%D0%A9%D0%AC%D0%AE%20S-%D0%9E%D0%91%D0%A0%D0%90%D0%97%D0%9D%D0%AB%D0%A5%20%D0%A4%D0%A3%D0%9D%D0%9A%D0%A6%D0%98%D0%99%20%2850-54%29.pdf. Retrieved 2020-06-19. (5 pages) [1]
- ↑ "A Family Of Recurrence Generating Activation Functions Based On Gudermann Function". International Journal of Engineering Researches and Management Studies (Faculty of Mathematics and Informatics, University of Plovdiv "Paisii Hilendarski", Plovdiv, Bulgaria) 4 (8): 38–48. August 2017. ISSN 2394-7659. http://www.ijerms.com/DOC/Isues%20pdf/Archive-2017/August-2017/7.pdf. Retrieved 2020-06-19. (11 pages) [2]
- ↑ Orlando, Giuseppe (2016-07-01). "A discrete mathematical model for chaotic dynamics in economics: Kaldor's model on business cycle". Mathematics and Computers in Simulation. 8th Workshop STRUCTURAL DYNAMICAL SYSTEMS: Computational Aspects; Edited by Nicoletta Del Buono, Roberto Garrappa and Giulia Spaletta and Nonstandard Applications of Computer Algebra (ACA’2013); Edited by Francisco Botana, Antonio Hernando, Eugenio Roanes-Lozano and Michael J. Wester 125: 83–98. doi:10.1016/j.matcom.2016.01.001. ISSN 0378-4754. https://www.sciencedirect.com/science/article/pii/S0378475416000045.
- ↑ (in ru). Tomsk, Russia: Tomsk Politehnic University (TPU/ТПУ). 2009. pp. 135–138No. 4/314. http://cyberleninka.ru/article/n/primenenie-modifitsirovannoy-funktsii-giperbolicheskogo-tangensa-dlya-approksimatsii-voltampernyh-harakteristik-polevyh. Retrieved 2015-11-05. (4 pages) [3]
- ↑ "Sigmoidal Functions In Antenna-Feeder Technique". International Journal of Pure and Applied Mathematics (Faculty of Mathematics and Informatics, University of Plovdiv "Paisii Hilendarski", Plovdiv, Bulgaria / Technical University of Sofia, Sofia, Bulgaria: Academic Publications, Ltd.) 116 (4): 1081–1092. 2017-11-23. doi:10.12732/ijpam.v116i4.23. ISSN 1311-8080. https://ijpam.eu/contents/2017-116-4/23/23.pdf. Retrieved 2020-06-19. (12 pages)
- ↑ (in en, it, pt) Power Exhaust Data Analysis and Modeling Of Advanced Divertor Configuration (Thesis). Joint Research Doctorate In Fusion Science And Engineering Cycle XXX. Padova, Italy: Centro Ricerche Fusione (CRF), Università degli Studi di Padova / Università degli Studi di Napoli Federico II / Instituto Superior Técnico (IST), Universidade de Lisboa. 2018-01-15. p. 84. ID 10811. http://paduaresearch.cab.unipd.it/10811/1/Giulio_Rubino_Tesi.pdf. Retrieved 2020-06-19. [4] (2+viii+3*iii+102 pages)
- ↑ "A Note on the Soboleva' Modified Hyperbolic Tangent Activation Function". International Journal of Innovative Science, Engineering & Technology (JISET) (Faculty of Mathematics and Informatics, University of Plovdiv "Paisii Hilendarski", Plovdiv, Bulgaria) 4 (6): 177–182. June 2017. ISSN 2348-7968. http://ijiset.com/vol4/v4s6/IJISET_V4_I06_21.pdf. Retrieved 2020-06-19. (6 pages) [5]
Further reading
- "A Note on the New Activation Function of Gompertz Type". Biomath Communications (Faculty of Mathematics and Informatics, University of Plovdiv "Paisii Hilendarski", Plovdiv, Bulgaria / Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria: Biomath Forum (BF)) 4 (2). 2017. doi:10.11145/10.11145/bmc.2017.10.201. ISSN 2367-5233. http://www.biomathforum.org/biomath/index.php/conference/article/view/1070. Retrieved 2020-06-19. (20 pages) [6]
Original source: https://en.wikipedia.org/wiki/Soboleva modified hyperbolic tangent.
Read more |