Induced metric

From HandWiki
Revision as of 18:27, 6 February 2024 by Steve Marsio (talk | contribs) (add)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mathematics and theoretical physics, the induced metric is the metric tensor defined on a submanifold that is induced from the metric tensor on a manifold into which the submanifold is embedded, through the pullback.[1] It may be determined using the following formula (using the Einstein summation convention), which is the component form of the pullback operation:[2]

[math]\displaystyle{ g_{ab} = \partial_a X^\mu \partial_b X^\nu g_{\mu\nu}\ }[/math]

Here [math]\displaystyle{ a }[/math], [math]\displaystyle{ b }[/math] describe the indices of coordinates [math]\displaystyle{ \xi^a }[/math] of the submanifold while the functions [math]\displaystyle{ X^\mu(\xi^a) }[/math] encode the embedding into the higher-dimensional manifold whose tangent indices are denoted [math]\displaystyle{ \mu }[/math], [math]\displaystyle{ \nu }[/math].

Example – Curve in 3D

Let

[math]\displaystyle{ \Pi\colon \mathcal{C} \to \mathbb{R}^3,\ \tau \mapsto \begin{cases}\begin{align}x^1&= (a+b\cos(n\cdot \tau))\cos(m\cdot \tau)\\x^2&=(a+b\cos(n\cdot \tau))\sin(m\cdot \tau)\\x^3&=b\sin(n\cdot \tau).\end{align} \end{cases} }[/math]

be a map from the domain of the curve [math]\displaystyle{ \mathcal{C} }[/math] with parameter [math]\displaystyle{ \tau }[/math] into the Euclidean manifold [math]\displaystyle{ \mathbb{R}^3 }[/math]. Here [math]\displaystyle{ a,b,m,n\in\mathbb{R} }[/math] are constants.

Then there is a metric given on [math]\displaystyle{ \mathbb{R}^3 }[/math] as

[math]\displaystyle{ g=\sum\limits_{\mu,\nu}g_{\mu\nu}\mathrm{d}x^\mu\otimes \mathrm{d}x^\nu\quad\text{with}\quad g_{\mu\nu} = \begin{pmatrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{pmatrix} }[/math].

and we compute

[math]\displaystyle{ g_{\tau\tau}=\sum\limits_{\mu,\nu}\frac{\partial x^\mu}{\partial \tau}\frac{\partial x^\nu}{\partial \tau}\underbrace{g_{\mu\nu}}_{\delta_{\mu\nu}} = \sum\limits_\mu\left(\frac{\partial x^\mu}{\partial \tau}\right)^2=m^2 a^2+2m^2ab\cos(n\cdot \tau)+m^2b^2\cos^2(n\cdot \tau)+b^2n^2 }[/math]

Therefore [math]\displaystyle{ g_\mathcal{C}=(m^2 a^2+2m^2ab\cos(n\cdot \tau)+m^2b^2\cos^2(n\cdot \tau)+b^2n^2) \, \mathrm{d}\tau\otimes \mathrm{d}\tau }[/math]

See also

References

  1. Lee, John M. (2006-04-06) (in en). Riemannian Manifolds: An Introduction to Curvature. Graduate Texts in Mathematics. Springer Science & Business Media. pp. 25–27. ISBN 978-0-387-22726-9. OCLC 704424444. https://books.google.com/books?id=92PgBwAAQBAJ. 
  2. Poisson, Eric (2004). A Relativist's Toolkit. Cambridge University Press. p. 62. ISBN 978-0-521-83091-1.