Onsager–Machlup function
The Onsager–Machlup function is a function that summarizes the dynamics of a continuous stochastic process. It is used to define a probability density for a stochastic process, and it is similar to the Lagrangian of a dynamical system. It is named after Lars Onsager and Stefan Machlup who were the first to consider such probability densities.[1]
The dynamics of a continuous stochastic process X from time t = 0 to t = T in one dimension, satisfying a stochastic differential equation
- [math]\displaystyle{ dX_t = b(X_t)\,dt + \sigma(X_t)\,dW_t }[/math]
where W is a Wiener process, can in approximation be described by the probability density function of its value xi at a finite number of points in time ti:
- [math]\displaystyle{ p(x_1,\ldots,x_n) = \left( \prod^{n-1}_{i=1} \frac{1}{\sqrt{2\pi\sigma(x_i)^2\Delta t_i}} \right) \exp\left(-\sum^{n-1}_{i=1} L\left(x_i,\frac{x_{i+1}-x_i}{\Delta t_i}\right) \, \Delta t_i \right) }[/math]
where
- [math]\displaystyle{ L(x,v) = \frac{1}{2}\left(\frac{v - b(x)}{\sigma(x)}\right)^2 }[/math]
and Δti = ti+1 − ti > 0, t1 = 0 and tn = T. A similar approximation is possible for processes in higher dimensions. The approximation is more accurate for smaller time step sizes Δti, but in the limit Δti → 0 the probability density function becomes ill defined, one reason being that the product of terms
- [math]\displaystyle{ \frac{1}{\sqrt{2\pi\sigma(x_i)^2\Delta t_i}} }[/math]
diverges to infinity. In order to nevertheless define a density for the continuous stochastic process X, ratios of probabilities of X lying within a small distance ε from smooth curves φ1 and φ2 are considered:[2]
- [math]\displaystyle{ \frac{P\left( \left |X_t - \varphi_1(t) \right| \leq \varepsilon \text{ for every }t\in[0,T] \right)}{P\left( \left |X_t - \varphi_2(t) \right | \leq \varepsilon \text{ for every }t\in[0,T] \right)} \to \exp\left(-\int^T_0 L \left (\varphi_1(t),\dot{\varphi}_1(t) \right ) \, dt + \int^T_0 L \left (\varphi_2(t),\dot{\varphi}_2(t) \right) \, dt \right) }[/math]
as ε → 0, where L is the Onsager–Machlup function.
Definition
Consider a d-dimensional Riemannian manifold M and a diffusion process X = {Xt : 0 ≤ t ≤ T} on M with infinitesimal generator 1/2ΔM + b, where ΔM is the Laplace–Beltrami operator and b is a vector field. For any two smooth curves φ1, φ2 : [0, T] → M,
- [math]\displaystyle{ \lim_{\varepsilon\downarrow0} \frac{P\left( \rho(X_t,\varphi_1(t)) \leq \varepsilon \text{ for every }t\in[0,T] \right)}{P\left( \rho(X_t,\varphi_2(t)) \leq \varepsilon \text{ for every }t\in[0,T] \right)} = \exp\left( -\int^T_0 L \left (\varphi_1(t),\dot{\varphi}_1(t) \right ) \, dt +\int^T_0 L \left (\varphi_2(t),\dot{\varphi}_2(t) \right ) \, dt \right) }[/math]
where ρ is the Riemannian distance, [math]\displaystyle{ \scriptstyle \dot{\varphi}_1, \dot{\varphi}_2 }[/math] denote the first derivatives of φ1, φ2, and L is called the Onsager–Machlup function.
The Onsager–Machlup function is given by[3][4][5]
- [math]\displaystyle{ L(x,v) = \tfrac{1}{2}\|v-b(x)\|_x^2 +\tfrac{1}{2}\operatorname{div}\, b(x) - \tfrac{1}{12}R(x), }[/math]
where || ⋅ ||x is the Riemannian norm in the tangent space Tx(M) at x, div b(x) is the divergence of b at x, and R(x) is the scalar curvature at x.
Examples
The following examples give explicit expressions for the Onsager–Machlup function of a continuous stochastic processes.
Wiener process on the real line
The Onsager–Machlup function of a Wiener process on the real line R is given by[6]
- [math]\displaystyle{ L(x,v)=\tfrac{1}{2}|v|^2. }[/math]
Proof: Let X = {Xt : 0 ≤ t ≤ T} be a Wiener process on R and let φ : [0, T] → R be a twice differentiable curve such that φ(0) = X0. Define another process Xφ = {Xtφ : 0 ≤ t ≤ T} by Xtφ = Xt − φ(t) and a measure Pφ by
- [math]\displaystyle{ P^\varphi = \exp\left( \int^T_0\dot{\varphi}(t) \, dX^\varphi_t + \int^T_0\tfrac{1}{2} \left |\dot{\varphi}(t) \right |^2 \, dt \right) \, dP. }[/math]
For every ε > 0, the probability that |Xt − φ(t)| ≤ ε for every t ∈ [0, T] satisfies
- [math]\displaystyle{ \begin{align} P \left ( \left |X_t-\varphi(t) \right |\leq\varepsilon \text{ for every }t\in[0,T] \right ) &=P\left ( \left |X^\varphi_t \right|\leq\varepsilon \text{ for every }t\in[0,T] \right) \\ &=\int_{\left \{ \left |X^\varphi_t \right |\leq\varepsilon\text{ for every }t\in[0,T] \right\}} \exp\left( -\int^T_0\dot{\varphi}(t) \, dX^\varphi_t -\int^T_0\tfrac{1}{2}|\dot{\varphi}(t)|^2 \, dt \right) \, dP^\varphi. \end{align} }[/math]
By Girsanov's theorem, the distribution of Xφ under Pφ equals the distribution of X under P, hence the latter can be substituted by the former:
- [math]\displaystyle{ P(|X_t-\varphi(t)|\leq\varepsilon \text{ for every }t\in[0,T])=\int_{\left \{ \left |X^\varphi_t \right |\leq\varepsilon\text{ for every }t\in[0,T] \right\}} \exp\left( -\int^T_0\dot{\varphi}(t) \, dX_t -\int^T_0\tfrac{1}{2}|\dot{\varphi}(t)|^2 \, dt \right) \, dP. }[/math]
By Itō's lemma it holds that
- [math]\displaystyle{ \int^T_0\dot{\varphi}(t) \, dX_t = \dot{\varphi}(T)X_T - \int^T_0\ddot{\varphi}(t)X_t \, dt, }[/math]
where [math]\displaystyle{ \scriptstyle \ddot{\varphi} }[/math] is the second derivative of φ, and so this term is of order ε on the event where |Xt| ≤ ε for every t ∈ [0, T] and will disappear in the limit ε → 0, hence
- [math]\displaystyle{ \lim_{\varepsilon\downarrow 0} \frac{P(|X_t-\varphi(t)|\leq\varepsilon \text{ for every }t\in[0,T])}{P(|X_t|\leq\varepsilon\text{ for every } t \in [0,T])} =\exp\left( -\int^T_0\tfrac{1}{2}|\dot{\varphi}(t)|^2 \, dt \right). }[/math]
Diffusion processes with constant diffusion coefficient on Euclidean space
The Onsager–Machlup function in the one-dimensional case with constant diffusion coefficient σ is given by[7]
- [math]\displaystyle{ L(x,v)=\frac{1}{2}\left|\frac{v-b(x)}{\sigma}\right|^2 + \frac{1}{2}\frac{db}{dx}(x). }[/math]
In the d-dimensional case, with σ equal to the unit matrix, it is given by[8]
- [math]\displaystyle{ L(x,v)=\frac{1}{2}\|v-b(x)\|^2 + \frac{1}{2}(\operatorname{div}\, b)(x), }[/math]
where || ⋅ || is the Euclidean norm and
- [math]\displaystyle{ (\operatorname{div}\, b)(x) = \sum_{i=1}^d \frac{\partial}{\partial x_i} b_i(x). }[/math]
Generalizations
Generalizations have been obtained by weakening the differentiability condition on the curve φ.[9] Rather than taking the maximum distance between the stochastic process and the curve over a time interval, other conditions have been considered such as distances based on completely convex norms[10] and Hölder, Besov and Sobolev type norms.[11]
Applications
The Onsager–Machlup function can be used for purposes of reweighting and sampling trajectories,[12] as well as for determining the most probable trajectory of a diffusion process.[13][14]
See also
References
- ↑ Onsager, L. and Machlup, S. (1953)
- ↑ Stratonovich, R. (1971)
- ↑ Takahashi, Y. and Watanabe, S. (1980)
- ↑ Fujita, T. and Kotani, S. (1982)
- ↑ Wittich, Olaf
- ↑ Ikeda, N. and Watanabe, S. (1980), Chapter VI, Section 9
- ↑ Dürr, D. and Bach, A. (1978)
- ↑ Ikeda, N. and Watanabe, S. (1980), Chapter VI, Section 9
- ↑ Zeitouni, O. (1989)
- ↑ Shepp, L. and Zeitouni, O. (1993)
- ↑ Capitaine, M. (1995)
- ↑ Adib, A.B. (2008).
- ↑ Adib, A.B. (2008).
- ↑ Dürr, D. and Bach, A. (1978).
Bibliography
- Adib, A.B. (2008). "Stochastic actions for diffusive dynamics: Reweighting, sampling, and minimization". J. Phys. Chem. B 112 (19): 5910–5916. doi:10.1021/jp0751458. PMID 17999482.
- Capitaine, M. (1995). "Onsager–Machlup functional for some smooth norms on Wiener space". Probab. Theory Relat. Fields 102 (2): 189–201. doi:10.1007/bf01213388.
- Dürr, D.; Bach, A. (1978). "The Onsager–Machlup function as Lagrangian for the most probable path of a diffusion process". Commun. Math. Phys. 60 (2): 153–170. doi:10.1007/bf01609446. Bibcode: 1978CMaPh..60..153D. http://projecteuclid.org/euclid.cmp/1103904077.
- Fujita, T.; Kotani, S. (1982). "The Onsager–Machlup function for diffusion processes". J. Math. Kyoto Univ. 22: 115–130. doi:10.1215/kjm/1250521863.
- Ikeda, N.; Watanabe, S. (1980). Stochastic differential equations and diffusion processes. Kodansha-John Wiley.
- Onsager, L.; Machlup, S. (1953). "Fluctuations and Irreversible Processes". Physical Review 91 (6): 1505–1512. doi:10.1103/physrev.91.1505. Bibcode: 1953PhRv...91.1505O.
- Shepp, L.; Zeitouni, O. (1993). "Exponential estimates for convex norms and some applications". Barcelona Seminar on Stochastic Analysis. 32. Berlin: Birkhauser-Verlag. 203–215. doi:10.1007/978-3-0348-8555-3_11. ISBN 978-3-0348-9677-1.
- Stratonovich, R. (1971). "On the probability functional of diffusion processes". Select. Transl. In Math. Stat. Prob. 10: 273–286.
- Takahashi, Y.; Watanabe, S. (1981). "Stochastic integrals (Proc. Sympos., Univ. Durham, Durham, 1980)". 851. Berlin: Springer. pp. 433–463. doi:10.1007/BFb0088735.
- Wittich, Olaf. The Onsager–Machlup Functional Revisited.
- Zeitouni, O. (1989). "On the Onsager–Machlup functional of diffusion processes around non C2 curves". Annals of Probability 17 (3): 1037–1054. doi:10.1214/aop/1176991255.
External links
- Onsager–Machlup function. Encyclopedia of Mathematics. URL: http://www.encyclopediaofmath.org/index.php?title=Onsager-Machlup_function&oldid=22857
Original source: https://en.wikipedia.org/wiki/Onsager–Machlup function.
Read more |