Mosco convergence

From HandWiki
Revision as of 20:59, 6 February 2024 by Rjetedi (talk | contribs) (over-write)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mathematical analysis, Mosco convergence is a notion of convergence for functionals that is used in nonlinear analysis and set-valued analysis. It is a particular case of Γ-convergence. Mosco convergence is sometimes phrased as “weak Γ-liminf and strong Γ-limsup” convergence since it uses both the weak and strong topologies on a topological vector space X. In finite dimensional spaces, Mosco convergence coincides with epi-convergence, while in infinite-dimensional ones, Mosco convergence is strictly stronger property.

Mosco convergence is named after Italian mathematician Umberto Mosco, a current Harold J. Gay[1] professor of mathematics at Worcester Polytechnic Institute.

Definition

Let X be a topological vector space and let X denote the dual space of continuous linear functionals on X. Let Fn : X → [0, +∞] be functionals on X for each n = 1, 2, ... The sequence (or, more generally, net) (Fn) is said to Mosco converge to another functional F : X → [0, +∞] if the following two conditions hold:

  • lower bound inequality: for each sequence of elements xn ∈ X converging weakly to x ∈ X,
[math]\displaystyle{ \liminf_{n \to \infty} F_{n} (x_{n}) \geq F(x); }[/math]
  • upper bound inequality: for every x ∈ X there exists an approximating sequence of elements xn ∈ X, converging strongly to x, such that
[math]\displaystyle{ \limsup_{n \to \infty} F_{n} (x_{n}) \leq F(x). }[/math]

Since lower and upper bound inequalities of this type are used in the definition of Γ-convergence, Mosco convergence is sometimes phrased as “weak Γ-liminf and strong Γ-limsup” convergence. Mosco convergence is sometimes abbreviated to M-convergence and denoted by

[math]\displaystyle{ \mathop{\text{M-lim}}_{n \to \infty} F_{n} = F \text{ or } F_{n} \xrightarrow[n \to \infty]{\mathrm{M}} F. }[/math]

References

Notes