Chemistry:3-Dehydroshikimic acid

From HandWiki
Revision as of 08:46, 8 February 2024 by LinXED (talk | contribs) (fix)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
3-Dehydroshikimic acid
Chemical structure of 3-dehydroshikimic acid.
Names
Preferred IUPAC name
(4S,5R)-4,5-Dihydroxy-3-oxocyclohex-1-ene-1-carboxylic acid
Other names
3-Dehydroshikimate
3-DHS
(−)-3-DHS
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
Properties
C7H8O5
Molar mass 172.136 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references
Tracking categories (test):

3-Dehydroshikimic acid is a chemical compound related to shikimic acid. 3-DHS is available in large quantity through engineering of the shikimic acid pathway.[1]

Metabolism

Biosynthesis: The enzyme 3-dehydroquinate dehydratase uses 3-dehydroquinate to produce 3-dehydroshikimate and H2O.

3-Dehydroshikimate is then reduced to shikimic acid by the enzyme shikimate dehydrogenase, which uses nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor.

Biosynthesis of shikimic acid from 3-dehydroquinate

Gallic acid is also formed from 3-dehydroshikimate by the action of the enzyme shikimate dehydrogenase to produce 3,5-didehydroshikimate. This latter compound spontaneously rearranges to gallic acid.[2][3][4]

References

  1. Banwell, M. G.; Edwards, A. J.; Essers, M.; Jolliffe, K. A. (2003). "Conversion of (−)-3-Dehydroshikimic Acid into Derivatives of the (+)-Enantiomer". The Journal of Organic Chemistry 68 (17): 6839–6841. doi:10.1021/jo034689c. PMID 12919063. https://figshare.com/articles/journal_contribution/3700032. 
  2. Gallic acid pathway on metacyc.org
  3. Dewick, P. M.; Haslam, E. (1969). "Phenol biosynthesis in higher plants. Gallic acid". The Biochemical Journal 113 (3): 537–542. doi:10.1042/bj1130537. PMID 5807212. 
  4. Muir, R. M.; Ibáñez, A. M.; Uratsu, S. L.; Ingham, E. S.; Leslie, C. A.; McGranahan, G. H.; Batra, N.; Goyal, S. et al. (2011). "Mechanism of gallic acid biosynthesis in bacteria (Escherichia coli) and walnut (Juglans regia)". Plant Molecular Biology 75 (6): 555–565. doi:10.1007/s11103-011-9739-3. PMID 21279669.