Chemistry:Gallic acid

From HandWiki
Short description: 3,4,5-Trihydroxybenzoic acid
Gallic acid
Skeletal formula
Space-filling model of gallic acid
Names
Preferred IUPAC name
3,4,5-Trihydroxybenzoic acid
Other names
Gallic acid
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
EC Number
  • 205-749-9
KEGG
RTECS number
  • LW7525000
UNII
Properties
C7H6O5
Molar mass 170.12 g/mol
Appearance White, yellowish-white, or
pale fawn-colored crystals.
Density 1.694 g/cm3 (anhydrous)
Melting point 260 °C (500 °F; 533 K)
1.19 g/100 mL, 20°C (anhydrous)
1.5 g/100 mL, 20 °C (monohydrate)
Solubility soluble in alcohol, ether, glycerol, acetone
negligible in benzene, chloroform, petroleum ether
log P 0.70
Acidity (pKa) COOH: 4.5, OH: 10.
-90.0·10−6 cm3/mol
Hazards
Main hazards Irritant
Safety data sheet External MSDS
NFPA 704 (fire diamond)
Flammability code 0: Will not burn. E.g. waterHealth code 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineReactivity (yellow): no hazard codeSpecial hazards (white): no codeNFPA 704 four-colored diamond
0
1
Lethal dose or concentration (LD, LC):
5000 mg/kg (rabbit, oral)
Related compounds
Related
phenols,
carboxylic acids
Related compounds
Benzoic acid, Phenol, Pyrogallol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references
Tracking categories (test):

Gallic acid (also known as 3,4,5-trihydroxybenzoic acid) is a trihydroxybenzoic acid with the formula C6H2(OH)3CO2H. It is classified as a phenolic acid. It is found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants.[1] It is a white solid, although samples are typically brown owing to partial oxidation. Salts and esters of gallic acid are termed "gallates".

Its name is derived from oak galls, which were historically used to prepare tannic acid. Despite the name, gallic acid does not contain gallium.

Isolation and derivatives

Electrostatic potential map of surface of gallic acid molecule
Ellagic acid molecule structure resembles that of two gallic acid molecules assembled in head to tail position and linked together by a C–C bond (as in biphenyl) and two cyclic ester links (lactones) forming two additional 6-piece cycles.

Gallic acid is easily freed from gallotannins by acidic or alkaline hydrolysis. When heated with concentrated sulfuric acid, gallic acid converts to rufigallol. Hydrolyzable tannins break down on hydrolysis to give gallic acid and glucose or ellagic acid and glucose, known as gallotannins and ellagitannins, respectively.[2]

Biosynthesis

Chemical structure of 3,5-didehydroshikimate

Gallic acid is formed from 3-dehydroshikimate by the action of the enzyme shikimate dehydrogenase to produce 3,5-didehydroshikimate. This latter compound aromatizes.[3][4]

Reactions

Oxidation and oxidative coupling

Alkaline solutions of gallic acid are readily oxidized by air. The oxidation is catalyzed by the enzyme gallate dioxygenase, an enzyme found in Pseudomonas putida.

Oxidative coupling of gallic acid with arsenic acid, permanganate, persulfate, or iodine yields ellagic acid, as does reaction of methyl gallate with iron(III) chloride.[5] Gallic acid forms intermolecular esters (depsides) such as digallic and cyclic ether-esters (depsidones).[5]

Hydrogenation

Hydrogenation of gallic acid gives the cyclohexane derivative hexahydrogallic acid.[6]

Decarboxylation

Heating gallic acid gives pyrogallol (1,2,3-trihydroxybenzene). This conversion is catalyzed by gallate decarboxylase.

Esterification

Many esters of gallic acid are known, both synthetic and natural. Gallate 1-beta-glucosyltransferase catalyzes the glycosylation (attachment of glucose) of gallic acid.

Historical context and uses

Gallic acid is an important component of iron gall ink, the standard European writing and drawing ink from the 12th to 19th centuries, with a history extending to the Roman empire and the Dead Sea Scrolls. Pliny the Elder (23-79 AD) describes the use of gallic acid as a means of detecting an adulteration of verdigris[7] and writes that it was used to produce dyes. Galls (also known as oak apples) from oak trees were crushed and mixed with water, producing tannic acid. It could then be mixed with green vitriol (ferrous sulfate) — obtained by allowing sulfate-saturated water from a spring or mine drainage to evaporate[citation needed] — and gum arabic from acacia trees; this combination of ingredients produced the ink.[8]

Gallic acid was one of the substances used by Angelo Mai (1782–1854), among other early investigators of palimpsests, to clear the top layer of text off and reveal hidden manuscripts underneath. Mai was the first to employ it, but did so "with a heavy hand", often rendering manuscripts too damaged for subsequent study by other researchers.[9]

Gallic acid was first studied by the Swedish chemist Carl Wilhelm Scheele in 1786.[10] In 1818, French chemist and pharmacist Henri Braconnot (1780–1855) devised a simpler method of purifying gallic acid from galls;[11] gallic acid was also studied by the French chemist Théophile-Jules Pelouze (1807–1867),[12] among others.

When mixed with acetic acid, gallic acid had uses in early types of photography, like the calotype to make the silver more sensitive to light; it was also used in developing photographs.[13]

Occurrence

Gallic acid is found in a number of land plants, such as the parasitic plant Cynomorium coccineum,[14] the aquatic plant Myriophyllum spicatum, and the blue-green alga Microcystis aeruginosa.[15] Gallic acid is also found in various oak species,[16] Caesalpinia mimosoides,[17] and in the stem bark of Boswellia dalzielii,[18] among others. Many foodstuffs contain various amounts of gallic acid, especially fruits (including strawberries, grapes, bananas),[19][20] as well as teas,[19][21] cloves,[22] and vinegars.[23][clarification needed] Carob fruit is a rich source of gallic acid (24–165 mg per 100 g).[24]

Esters

Also known as galloylated esters:

Gallate esters are antioxidants useful in food preservation, with propyl gallate being the most commonly used. Their use in human health is scantly supported by evidence.

Spectral data

UV-Vis
Lambda-max: 220, 271 nm (ethanol)
Spectrum of gallic acid
Extinction coefficient (log ε)
IR
Major absorption bands ν : 3491, 3377, 1703, 1617, 1539, 1453, 1254 cm−1 (KBr)
NMR
Proton NMR


(acetone-d6):
d : doublet, dd : doublet of doublets,
m : multiplet, s : singlet

δ :

7.15 (2H, s, H-3 and H-7)

Carbon-13 NMR


(acetone-d6):

δ :

167.39 (C-1),
144.94 (C-4 and C-6),
137.77 (C-5),
120.81 (C-2),
109.14 (C-3 and C-7)

Other NMR data
MS
Masses of
main fragments
ESI-MS [M-H]- m/z : 169.0137 ms/ms (iontrap)@35 CE m/z product 125(100), 81(<1)

[17]

See also

References

  1. Haslam, E.; Cai, Y. (1994). "Plant polyphenols (vegetable tannins): Gallic acid metabolism". Natural Product Reports 11 (1): 41–66. doi:10.1039/NP9941100041. PMID 15206456. 
  2. Andrew Pengelly (2004), The Constituents of Medicinal Plants (2nd ed.), Allen & Unwin, pp. 29–30 
  3. Gallic acid pathway on metacyc.org
  4. Dewick, PM; Haslam, E (1969). "Phenol Biosynthesis in Higher Plants. Gallic Acid". Biochemical Journal 113 (3): 537–542. doi:10.1042/bj1130537. PMID 5807212. 
  5. 5.0 5.1 Edwin Ritzer; Rudolf Sundermann (2007), "Hydroxycarboxylic Acids, Aromatic", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, p. 6 
  6. Albert W. Burgstahler and Zoe J. Bithos (1962). "Hexahydrogallic Acid and Hexahydrogallic Acid Triacetate". Organic Syntheses 42: 62. doi:10.15227/orgsyn.042.0062. 
  7. Pliny the Elder with John Bostock and H.T. Riley, trans., The Natural History of Pliny (London, England: Henry G. Bohn, 1857), vol. 6, p. 196. In Book 34, Chapter 26 of his Natural History, Pliny states that verdigris (a form of copper acetate (Cu(CH3COO)2·2Cu(OH)2), which was used to process leather, was sometimes adulterated with copperas (a form of iron(II) sulfate (FeSO4·7H2O)). He presented a simple test for determining the purity of verdigris. From p. 196: "The adulteration [of verdigris], however, which is most difficult to detect, is made with copperas; … The fraud may also be detected by using a leaf of papyrus, which has been steeped in an infusion of nut-galls; for it becomes black immediately upon the genuine verdigris being applied."
  8. Fruen, Lois. "Iron Gall Ink". http://www.realscience.breckschool.org/upper/fruen/files/Enrichmentarticles/files/IronGallInk/IronGallInk.html. 
  9. L.D. Reynolds and N.G. Wilson, "Scribes and Scholars" 3rd Ed. Oxford: 1991, pp 193–4.
  10. Carl Wilhelm Scheele (1786) "Om Sal essentiale Gallarum eller Gallåple-salt" (On the essential salt of galls or gall-salt), Kongliga Vetenskaps Academiens nya Handlingar (Proceedings of the Royal [Swedish] Academy of Science), 7: 30–34.
  11. Braconnot Henri (1818). "Observations sur la préparation et la purification de l'acide gallique, et sur l'existence d'un acide nouveau dans la noix de galle". Annales de Chimie et de Physique 9: 181–184. https://books.google.com/books?id=OwXcSjJbARAC&pg=PA181. 
  12. J. Pelouze (1833) "Mémoire sur le tannin et les acides gallique, pyrogallique, ellagique et métagallique," Annales de chimie et de physique, 54: 337–365 [presented February 17, 1834].
  13. Taylor, Roger; Schaaf, Larry John (2007) (in en). Impressed by Light: British Photographs from Paper Negatives, 1840-1860. Metropolitan Museum of Art. ISBN 978-1-58839-225-1. https://books.google.com/books?id=DnfBcmW-OkYC&pg=PA65. 
  14. Zucca, Paolo; Rosa, Antonella; Tuberoso, Carlo; Piras, Alessandra; Rinaldi, Andrea; Sanjust, Enrico; Dessì, Maria; Rescigno, Antonio (11 January 2013). "Evaluation of Antioxidant Potential of "Maltese Mushroom" (Cynomorium coccineum) by Means of Multiple Chemical and Biological Assays". Nutrients 5 (1): 149–161. doi:10.3390/nu5010149. PMID 23344249. 
  15. Nakai, S (2000). "Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa". Water Research 34 (11): 3026–3032. doi:10.1016/S0043-1354(00)00039-7. Bibcode2000WatRe..34.3026N. 
  16. Mämmelä, Pirjo; Savolainen, Heikki; Lindroos, Lasse; Kangas, Juhani; Vartiainen, Terttu (2000). "Analysis of oak tannins by liquid chromatography-electrospray ionisation mass spectrometry". Journal of Chromatography A 891 (1): 75–83. doi:10.1016/S0021-9673(00)00624-5. PMID 10999626. 
  17. 17.0 17.1 Chanwitheesuk, Anchana; Teerawutgulrag, Aphiwat; Kilburn, Jeremy D.; Rakariyatham, Nuansri (2007). "Antimicrobial gallic acid from Caesalpinia mimosoides Lamk". Food Chemistry 100 (3): 1044–1048. doi:10.1016/j.foodchem.2005.11.008. 
  18. Alemika, Taiwo E.; Onawunmi, Grace O.; Olugbade, Tiwalade A. (2007). "Antibacterial phenolics from Boswellia dalzielii". Nigerian Journal of Natural Products and Medicine 10 (1): 108–10. http://www.ajol.info/index.php/njnpm/article/view/11864. 
  19. 19.0 19.1 "Gallic acid attenuates dextran sulfate sodium-induced experimental colitis in BALB/c mice". Drug Design, Development and Therapy 9: 3923–34. 2015. doi:10.2147/DDDT.S86345. PMID 26251571. 
  20. Koyama, K; Goto-Yamamoto, N; Hashizume, K (2007). "Influence of maceration temperature in red wine vinification on extraction of phenolics from berry skins and seeds of grape (Vitis vinifera)". Bioscience, Biotechnology, and Biochemistry 71 (4): 958–65. doi:10.1271/bbb.60628. PMID 17420579. 
  21. "Gallic acid metabolites are markers of black tea intake in humans". Journal of Agricultural and Food Chemistry 48 (6): 2276–80. 2000. doi:10.1021/jf000089s. PMID 10888536. 
  22. Pathak, S. B. et al. (2004). "TLC Densitometric Method for the Quantification of Eugenol and Gallic Acid in Clove". Chromatographia 60 (3–4): 241–244. doi:10.1365/s10337-004-0373-y. 
  23. Gálvez, Miguel Carrero; Barroso, Carmelo García; Pérez-Bustamante, Juan Antonio (1994). "Analysis of polyphenolic compounds of different vinegar samples". Zeitschrift für Lebensmittel-Untersuchung und -Forschung 199: 29–31. doi:10.1007/BF01192948. 
  24. Goulas, Vlasios; Stylos, Evgenios; Chatziathanasiadou, Maria; Mavromoustakos, Thomas; Tzakos, Andreas (10 November 2016). "Functional Components of Carob Fruit: Linking the Chemical and Biological Space". International Journal of Molecular Sciences 17 (11): 1875. doi:10.3390/ijms17111875. ISSN 1422-0067. PMID 27834921.