Percolation critical exponents

From HandWiki
Revision as of 19:55, 8 February 2024 by MainAI6 (talk | contribs) (over-write)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Mathematical parameter in percolation theory


In the context of the physical and mathematical theory of percolation, a percolation transition is characterized by a set of universal critical exponents, which describe the fractal properties of the percolating medium at large scales and sufficiently close to the transition. The exponents are universal in the sense that they only depend on the type of percolation model and on the space dimension. They are expected to not depend on microscopic details such as the lattice structure, or whether site or bond percolation is considered. This article deals with the critical exponents of random percolation.

Percolating systems have a parameter [math]\displaystyle{ p\,\! }[/math] which controls the occupancy of sites or bonds in the system. At a critical value [math]\displaystyle{ p_c\,\! }[/math], the mean cluster size goes to infinity and the percolation transition takes place. As one approaches [math]\displaystyle{ p_c\,\! }[/math], various quantities either diverge or go to a constant value by a power law in [math]\displaystyle{ |p - p_c|\,\! }[/math], and the exponent of that power law is the critical exponent. While the exponent of that power law is generally the same on both sides of the threshold, the coefficient or "amplitude" is generally different, leading to a universal amplitude ratio.

Description

Thermodynamic or configurational systems near a critical point or a continuous phase transition become fractal, and the behavior of many quantities in such circumstances is described by universal critical exponents. Percolation theory is a particularly simple and fundamental model in statistical mechanics which has a critical point, and a great deal of work has been done in finding its critical exponents, both theoretically (limited to two dimensions) and numerically.

Critical exponents exist for a variety of observables, but most of them are linked to each other by exponent (or scaling) relations. Only a few of them are independent, and the choice of the fundamental exponents depends on the focus of the study at hand. One choice is the set [math]\displaystyle{ \{\sigma,\, \tau\}\,\! }[/math] motivated by the cluster size distribution, another choice is [math]\displaystyle{ \{d_\text{f},\, \nu\}\,\! }[/math] motivated by the structure of the infinite cluster. So-called correction exponents extend these sets, they refer to higher orders of the asymptotic expansion around the critical point.

Definitions of exponents

Self-similarity at the percolation threshold

Percolation clusters become self-similar precisely at the threshold density [math]\displaystyle{ p_c\,\! }[/math] for sufficiently large length scales, entailing the following asymptotic power laws:

The fractal dimension [math]\displaystyle{ d_\text{f}\,\! }[/math] relates how the mass of the incipient infinite cluster depends on the radius or another length measure, [math]\displaystyle{ M(L) \sim L^{d_\text{f}}\,\! }[/math] at [math]\displaystyle{ p=p_c\,\! }[/math] and for large probe sizes, [math]\displaystyle{ L\to\infty\,\! }[/math]. Other notation: magnetic exponent [math]\displaystyle{ y_h = D = d_f\,\! }[/math] and co-dimension [math]\displaystyle{ \Delta_\sigma = d - d_f\,\! }[/math].

The Fisher exponent [math]\displaystyle{ \tau\,\! }[/math] characterizes the cluster-size distribution [math]\displaystyle{ n_s\,\! }[/math], which is often determined in computer simulations. The latter counts the number of clusters with a given size (volume) [math]\displaystyle{ s\,\! }[/math], normalized by the total volume (number of lattice sites). The distribution obeys a power law at the threshold, [math]\displaystyle{ n_s \sim s^{-\tau}\,\! }[/math] asymptotically as [math]\displaystyle{ s\to\infty\,\! }[/math].

The probability for two sites separated by a distance [math]\displaystyle{ \vec r\,\! }[/math] to belong to the same cluster decays as [math]\displaystyle{ g(\vec r)\sim |\vec r|^{-2(d-d_\text{f})}\,\! }[/math] or [math]\displaystyle{ g(\vec r)\sim |\vec r|^{-d+(2-\eta)}\,\! }[/math] for large distances, which introduces the anomalous dimension [math]\displaystyle{ \eta\,\! }[/math]. Also, [math]\displaystyle{ \delta = (d + 2 - \eta)/(d - 2 + \eta) }[/math] and [math]\displaystyle{ \eta = 2 - \gamma/\nu }[/math].

The exponent [math]\displaystyle{ \Omega\,\! }[/math] is connected with the leading correction to scaling, which appears, e.g., in the asymptotic expansion of the cluster-size distribution, [math]\displaystyle{ n_s \sim s^{-\tau}(1+\text{const} \times s^{-\Omega})\,\! }[/math] for [math]\displaystyle{ s\to\infty\,\! }[/math]. Also, [math]\displaystyle{ \omega = \Omega/(\sigma \nu) = \Omega d_f }[/math].

For quantities like the mean cluster size [math]\displaystyle{ S \sim a_0 |p - p_c|^{-\gamma} (1 + a_1 (p - p_c)^{\Delta_1} +\ldots ) }[/math], the corrections are controlled by the exponent [math]\displaystyle{ \Delta_1 = \Omega\beta\delta = \omega \nu }[/math].[1]

The minimum or chemical distance or shortest-path exponent [math]\displaystyle{ d_\mathrm{min} }[/math] describes how the average minimum distance [math]\displaystyle{ \langle \ell \rangle }[/math] relates to the Euclidean distance [math]\displaystyle{ r }[/math], namely [math]\displaystyle{ \langle \ell \rangle \sim r^{d_\mathrm{min}} }[/math] Note, it is more appropriate and practical to measure average [math]\displaystyle{ r }[/math], <[math]\displaystyle{ r }[/math]> for a given [math]\displaystyle{ \ell }[/math]. The elastic backbone [2] has the same fractal dimension as the shortest path. A related quantity is the spreading dimension [math]\displaystyle{ d_\ell }[/math], which describes the scaling of the mass M of a critical cluster within a chemical distance [math]\displaystyle{ \ell }[/math] as [math]\displaystyle{ M \sim \ell^{d_\ell} }[/math], and is related to the fractal dimension [math]\displaystyle{ d_f }[/math] of the cluster by [math]\displaystyle{ d_\ell = d_f/d_\mathrm{min} }[/math]. The chemical distance can also be thought of as a time in an epidemic growth process, and one also defines [math]\displaystyle{ \nu_t }[/math] where [math]\displaystyle{ d_\mathrm{min} = \nu_t/\nu = z }[/math], and [math]\displaystyle{ z }[/math] is the dynamical exponent.[3] One also writes [math]\displaystyle{ \nu_\parallel = \nu_t }[/math].

Also related to the minimum dimension is the simultaneous growth of two nearby clusters. The probability that the two clusters coalesce exactly in time [math]\displaystyle{ t }[/math] scales as [math]\displaystyle{ p(t) \sim t^{-\lambda} }[/math][4] with [math]\displaystyle{ \lambda = 1 + 5/(4 d_\mathrm{min}) }[/math].[5]

The dimension of the backbone, which is defined as the subset of cluster sites carrying the current when a voltage difference is applied between two sites far apart, is [math]\displaystyle{ d_\text{b} }[/math] (or [math]\displaystyle{ d_\text{BB} }[/math]). One also defines [math]\displaystyle{ \xi=d-d_\text{b} }[/math].[6]

The fractal dimension of the random walk on an infinite incipient percolation cluster is given by [math]\displaystyle{ d_w }[/math].

The spectral dimension [math]\displaystyle{ \tilde d }[/math] such that the average number of distinct sites visited in an [math]\displaystyle{ N }[/math]-step random walk scales as [math]\displaystyle{ N^{\tilde d} }[/math].

Critical behavior close to the percolation threshold

The approach to the percolation threshold is governed by power laws again, which hold asymptotically close to [math]\displaystyle{ p_c\,\! }[/math]:

The exponent [math]\displaystyle{ \nu\,\! }[/math] describes the divergence of the correlation length [math]\displaystyle{ \xi\,\! }[/math] as the percolation transition is approached, [math]\displaystyle{ \xi \sim |p-p_c|^{-\nu}\,\! }[/math]. The infinite cluster becomes homogeneous at length scales beyond the correlation length; further, it is a measure for the linear extent of the largest finite cluster. Other notation: Thermal exponent [math]\displaystyle{ y_t = 1/\nu }[/math] and dimension [math]\displaystyle{ \Delta_\epsilon = d - 1/\nu }[/math].

Off criticality, only finite clusters exist up to a largest cluster size [math]\displaystyle{ s_\max\,\! }[/math], and the cluster-size distribution is smoothly cut off by a rapidly decaying function, [math]\displaystyle{ n_s \sim s^{-\tau} f(s/s_\max)\,\! }[/math]. The exponent [math]\displaystyle{ \sigma }[/math] characterizes the divergence of the cutoff parameter, [math]\displaystyle{ s_\max \sim |p-p_c|^{-1/\sigma}\,\! }[/math]. From the fractal relation we have [math]\displaystyle{ s_\max \sim \xi^{d_\text{f}}\,\! }[/math], yielding [math]\displaystyle{ \sigma = 1/\nu d_\text{f}\,\! }[/math].

The density of clusters (number of clusters per site) [math]\displaystyle{ n_c }[/math] is continuous at the threshold but its third derivative goes to infinity as determined by the exponent [math]\displaystyle{ \alpha }[/math]: [math]\displaystyle{ n_c \sim A + B (p - p_c) + C (p - p_c)^2 + D_\pm |p - p_c|^{2 - \alpha} + \cdots }[/math], where [math]\displaystyle{ D_\pm }[/math] represents the coefficient above and below the transition point.

The strength or weight of the percolating cluster, [math]\displaystyle{ P }[/math] or [math]\displaystyle{ P_\infty }[/math], is the probability that a site belongs to an infinite cluster. [math]\displaystyle{ P }[/math] is zero below the transition and is non-analytic. Just above the transition, [math]\displaystyle{ P\sim (p-p_c)^\beta\,\! }[/math], defining the exponent [math]\displaystyle{ \beta\,\! }[/math]. [math]\displaystyle{ \ P }[/math] plays the role of an order parameter.

The divergence of the mean cluster size [math]\displaystyle{ S=\sum_s s^2 n_s/p_c \sim |p-p_c|^{-\gamma}\,\! }[/math] introduces the exponent [math]\displaystyle{ \gamma\,\! }[/math].

The gap exponent Δ is defined as Δ = 1/(β+γ) = 1/σ and represents the "gap" in critical exponent values from one moment [math]\displaystyle{ M_n }[/math] to the next [math]\displaystyle{ M_{n+1} }[/math] for [math]\displaystyle{ n \gt 2 }[/math].

The conductivity exponent [math]\displaystyle{ t = \nu t' }[/math] describes how the electrical conductivity [math]\displaystyle{ C }[/math] goes to zero in a conductor-insulator mixture, [math]\displaystyle{ C\sim (p-p_c)^t\,\! }[/math]. Also, [math]\displaystyle{ t' = \zeta }[/math].

Surface critical exponents

The probability a point at a surface belongs to the percolating or infinite cluster for [math]\displaystyle{ p\ge p_c }[/math] is [math]\displaystyle{ P_\mathrm{surf}\sim (p-p_c)^{\beta_\mathrm{surf}}\,\! }[/math].

The surface fractal dimension is given by [math]\displaystyle{ d_\mathrm{surf} = d - 1 -\beta_\mathrm{surf}/\nu }[/math].[7]

Correlations parallel and perpendicular to the surface decay as [math]\displaystyle{ g_\parallel(\vec r)\sim |\vec r|^{2-d-\eta_\parallel}\,\! }[/math] and [math]\displaystyle{ g_\perp(\vec r)\sim |\vec r|^{2-d-\eta_\perp}\,\! }[/math].[8]

The mean size of finite clusters connected to a site in the surface is [math]\displaystyle{ \chi_1\sim|p-p_c|^{-\gamma_1} }[/math].[9][10][11]

The mean number of surface sites connected to a site in the surface is [math]\displaystyle{ \chi_{1,1}\sim|p-p_c|^{-\gamma_{1,1}} }[/math].[9][10][11]

Scaling relations

Hyperscaling relations

[math]\displaystyle{ \tau = \frac{d}{d_\text{f}} + 1\,\! }[/math]
[math]\displaystyle{ d_\text{f} = d - \frac{\beta}{\nu}\,\! }[/math]
[math]\displaystyle{ \eta = 2 + d - 2 d_\text{f}\,\! }[/math]

Relations based on [math]\displaystyle{ \{\sigma, \tau\} }[/math]

[math]\displaystyle{ \alpha = 2 - \frac{\tau - 1}{\sigma}\,\! }[/math]
[math]\displaystyle{ \beta = \frac{\tau - 2}{\sigma}\,\! }[/math]
[math]\displaystyle{ \gamma = \frac{3-\tau}{\sigma}\,\! }[/math]
[math]\displaystyle{ \beta+\gamma = \frac{1}{\sigma} = \nu d_f\,\! }[/math]
[math]\displaystyle{ \nu = \frac{\tau-1}{\sigma d} = \frac{2\beta+\gamma}{d}\,\! }[/math]
[math]\displaystyle{ \delta = \frac{1}{\tau-2}\,\! }[/math]

Relations based on [math]\displaystyle{ \{d_\text{f}, \nu\} }[/math]

[math]\displaystyle{ \alpha = 2 - \nu d\,\! }[/math]
[math]\displaystyle{ \beta = \nu (d - d_\text{f})\,\! }[/math]
[math]\displaystyle{ \gamma = \nu (2 d_\text{f} - d)\,\! }[/math]
[math]\displaystyle{ \sigma = \frac{1}{ \nu d_\text{f}}\,\! }[/math]

Conductivity scaling relations

[math]\displaystyle{ d_w = d + \frac{t-\beta}{ \nu}\,\! }[/math]
[math]\displaystyle{ t' = d_w - d_f\,\! }[/math]
[math]\displaystyle{ \tilde d = 2 d_f/d_w }[/math]

Surface scaling relations

[math]\displaystyle{ \eta_\parallel = 2 - d + 2 \beta_\mathrm{surf}/\nu\,\! }[/math]
[math]\displaystyle{ d_\mathrm{surf} = d - 1 -\beta_\mathrm{surf}/\nu\,\! }[/math]
[math]\displaystyle{ \eta_\parallel = 2\eta_\perp - \eta \, }[/math][12]
[math]\displaystyle{ \gamma_{1} = \nu (2-\eta_\perp)\,\! }[/math][11]
[math]\displaystyle{ \gamma_{1,1} = \nu (d-1-2 \beta_\mathrm{surf}/\nu)=\nu(1-\eta_\parallel)\,\! }[/math][11][13]
[math]\displaystyle{ \gamma + \nu = 2\gamma_1 - \gamma_{1,1} \,\! }[/math][10][11]
[math]\displaystyle{ x_1 = \beta_\mathrm{surf}/\nu\,\! }[/math]

Exponents for standard percolation

d 1[14] 2 3 4 5 6 – ε[15][16][17][note 1] 6 +
α 1 –2/3 -0.625(3)
-0.64(4)[20]
-0.756(40)
-0.75(2)[20]
-0.870(1)[20] [math]\displaystyle{ -1 + \frac{\varepsilon}{7} - \frac{443}{2^2 3^2 7^3} \varepsilon^2 }[/math] -1
β 0 0.14(3) [21]

5/36

0.39(2)[22]
0.4181(8)
0.41(1) [23]
0.405(25),[24]
0.4273[19]

0.4053(5)[25]
0.429(4) [20]

0.52(3)[22]
0.639(20)[26]
0.657(9)
0.6590[19]

0.658(1) [20]

0.66(5)[22]
0.835(5)[26]
0.830(10)
0.8457[19]

0.8454(2)[20]

[math]\displaystyle{ 1 - \frac{\varepsilon}{7}-\frac{61}{2^2 3^2 7^3} \varepsilon^2 }[/math] 1
γ 1 43/18 1.6[23]
1.80(5) [22]
1.66(7) [27]
1.793(3)
1.805(20) [26]
1.8357[19]
1.819(3)[25]

1.78(3)[20]

1.6(1) [22]
1.48(8)[27]
1.422(16)
1.4500[19]
1.435(15)[26]

1.430(6)[20]

1.3(1)[22]

1.18(7)[27]
1.185(5) [26]
1.1817[19]
1.1792(7) [20]

[math]\displaystyle{ 1 + \frac{\varepsilon}{7}+\frac{565}{2^2 3^2 7^3} \varepsilon^2 }[/math] 1
δ [math]\displaystyle{ \infty }[/math] 91/5, 18 [28] 5.29(6) [29]*
5.3 [28]

5.16(4) [20]

3.9 [28]
3.198(6) [30]

3.175(8) [20]

3.0 [28]

2.3952(12) [20]

[math]\displaystyle{ 2 + \frac{2}{7}\varepsilon+\frac{565}{2\cdot 3^2 7^3} \varepsilon^2 }[/math] 2
η 1 5/24 -0.046(8)[29]
-0.059(9) [31]
-0.07(5)[26]
-0.0470[19]

−0.03(1)[20]

-0.12(4)[26]
-0.0944(28) [30]
-0.0929(9)[32]
-0.0954[19]

-0.084(4)[20]

-0.075(20)[26]
-0.0565[19]

−0.0547(10)[20]

[math]\displaystyle{ -\frac{\varepsilon}{21}-\frac{206}{3^3 7^3} \varepsilon^2 }[/math] 0
ν 1 1.33(5) [33]
4/3
0.8(1),[23]
0.80(5),[33]
0.872(7) [26]
0.875(1)[29]
0.8765(18)[34]
0.8960[19]
0.8764(12)[35]
0.8751(11) [36]
0.8762(12)[37]
0.8774(13)[38]

0.88(2)[20]

0.6782(50)[26]
0.689(10)[30]

0.6920 [19]
0.693 [39]
0.6852(28) [38]
0.6845(23) [40]
0.6845(6)[41]
0.686(2)[20]

0.569(5) cited in [38]
0.571(3) [26]
0.5746 [19]

0.5723(18) [38]
0.5737(33) [40]
0.5757(7) [41]
0.5739(1) [20]

[math]\displaystyle{ \frac12 + \frac{5}{84} \varepsilon + \frac{589}{2^2 3^3 7^3} \varepsilon^2 }[/math] 1/2
σ 1 36/91 0.42(6) [42]

0.445(10) [29]
0.4522(8) [30]
0.4524(6)[37]
0.4419[19]
0.452(7) [20]

0.476(5)
0.4742[19]

0.4789(14) [20]

0.496(4)
0.4933[19]

0.49396(13) [20]

[math]\displaystyle{ \frac12 - \frac{1}{98} \varepsilon^2 }[/math] 1/2
τ 2 187/91 2.186(2) [31]
2.1888[19]
2.189(2) [29]
2.190(2) [32]
2.189(1) [43]
2.18906(8)[30]
2.18909(5)[37]

2.1892(1)[44]
2.1938(12) [20]

2.26[28]
2.313(3)[45]
2.3127(6)[30]
2.313(2)[32]
2.3124[19]
2.3142(5)[44]

2.3150(8) [20]

2.33[28]
2.412(4)[45]
2.4171[19]
2.419(1)[44]

2.4175(2) [20]

[math]\displaystyle{ \frac52 - \frac{\varepsilon}{14} + \frac{313}{2^3 3^2 7^3} \varepsilon^2 }[/math] 5/2
[math]\displaystyle{ d_\text{f} }[/math] 1 91/48 2.523(4) [29]*
2.530(4) [31]*
2.5230(1) [34]
2.5226(1) [46]
2.52293(10) [37]
3.05(5), 3.003 [39]
3.0472(14)[30]
3.046(7)[45]
3.046(5)[32]
3.0479 [19]
3.0437(11)[44]
3.0446(7) [40]
3.54(4)
3.69(2)[47] 
3.528 [19]
3.524(2)[44]
3.5260(14)[40]
[math]\displaystyle{ 4 - \frac{10}{21} \varepsilon + \frac{103}{3^3 7^3} \varepsilon^2 }[/math] 4
Ω 0.70(2) [32]
0.77(4) [48]
0.77(2) [49]
72/91 [50][51]
0.44(9) [1]
0.50(9) [26]
0.64(2) [29]
0.73(8) [31]
0.65(2) [52]
0.60(8) [32]

0.77(3) [44]
0.64(5)[34]

0.31(5) [26]
0.5(1) [32]
0.37(4) [30]
0.4008 [19]
0.27(7) [26]
0.2034[19]
0.210(2) [20]
[math]\displaystyle{ \frac{\varepsilon}{4} - \frac{283}{2^2 3^2 7^2} \varepsilon^2 }[/math]
ω 3/2 [50] 1.26(23) [26]
1.6334[19]
1.62(13)[34]
1.61(5)[29]
0.94(15) [26]
1.2198[19]
1.13(10) [30]
1.0(2) [53]
0.96(26) [26]
0.7178[19]
[math]\displaystyle{ \varepsilon - \frac{671}{2 \cdot 3^2 7^2} \varepsilon^2 }[/math] [54][19] 0
[math]\displaystyle{ t'=t / \nu }[/math] 0.9479 [55]
0.995(1) [56]
0.977(8)) [57]
0.9825(8) [4]
2.276(12) [58]
2.26(4) [59]
2.305(15) [60]
2.283(3) [53]
3
[math]\displaystyle{ d_w }[/math] 2.8784(8) [4]
[math]\displaystyle{ d_s }[/math] 4/3 [55]
1.327(1) [56]
1.3100(11) [4]
1.32(6) [61]
[math]\displaystyle{ d_\mathrm{surf} }[/math] 2/3 [62][63] 1.04(5)[10]
1.030(6) [64]
1.0246(4) [65]
1.32(7)[66] 1.65(3) [66] [math]\displaystyle{ 2 - \frac{5}{21} \varepsilon }[/math] [66] 2 [66]
[math]\displaystyle{ \beta_\mathrm{surf}/\nu = x_1 }[/math] 1/3 [62] 0.98(2)[67]
0.970(6)[64]
0.975(4) [68]
0.9754(4) [65]
0.974(2)[69]
1.64(2) [69] 2.408(5) [69] 3
[math]\displaystyle{ \eta_{\parallel} }[/math] (surf) 2/3 [62] 1.02(12) [66]
1.08(10)[10]
1.37(13) [66] 1.7(6) [66]
[math]\displaystyle{ d_\text{b} }[/math] 1.60(5) [2]
1.64(1) [70]
1.647(4) [3]
1.6432(8) [4]
1.6434(2) [71]

1.64336(10) [72]
1.64333316328711...* [6]

1.8, 1.77(7)[2]

1.855(15)[73]

1.95(5) [74]
1.9844(11) [40]
2.00(5)[74]
2.0226(27) [40]
2
[math]\displaystyle{ d_\text{min}=z }[/math] 1.132(2)[75]

1.130(3) [76]
1.1307(4) [3]
1.1303(8)[77]
1.1306(3) [4]
1.130 77(2) [78]

1.35(5)[2]

1.34(1) [76]
1.374(6)[64]
1.3756(6) [78]
1.3756(3) [35]
1.3755(3) [37]

1.607(5) [45]

1.6042(5) [40]

1.812(6) [45]

1.8137(16) [40]

2
[math]\displaystyle{ \lambda = \mu + 1 }[/math] 2.1055(10)[79]
2.1056(3)[5]
2.1045(10)[80]
2.105[81]
  • For [math]\displaystyle{ d=2 }[/math], [math]\displaystyle{ d_\mathrm{b} = 2-(z^2-1)/12 }[/math] where [math]\displaystyle{ z }[/math] satisfies [math]\displaystyle{ \sqrt{3}z / 4 + \sin(2 \pi z/3) = 0 }[/math] near [math]\displaystyle{ z = 2.3 }[/math].[6]

Exponents for protected percolation

In protected percolation, bonds are removed one at a time only from the percolating cluster. Isolated clusters are no longer modified. Scaling relations: [math]\displaystyle{ \beta' = \beta/(1+\beta) }[/math], [math]\displaystyle{ \gamma' = \gamma/(1+\beta) }[/math], [math]\displaystyle{ \nu' = \nu/(1+\beta) }[/math], [math]\displaystyle{ \tau' = \tau }[/math] where the primed quantities indicated protected percolation [25]

d 1 2 3 4 5 6 – ε 6 +
β' 5/41 [25] 0.288 71(15)[25]
γ' 86/41 [25] 1.3066(19)[25]
τ' 187/91[25] 2.1659(21)[25]

Exponents for standard percolation on a non-trivial planar lattice (Weighted planar stochastic lattice (WPSL))

WPSL Exponents
[math]\displaystyle{ d }[/math] [math]\displaystyle{ 2 }[/math]
[math]\displaystyle{ \nu }[/math] [math]\displaystyle{ 1.635 }[/math]
[math]\displaystyle{ \beta }[/math] [math]\displaystyle{ 0.222 }[/math]
[math]\displaystyle{ \gamma }[/math] [math]\displaystyle{ 2.825 }[/math]
[math]\displaystyle{ \tau }[/math] [math]\displaystyle{ 2.072 }[/math]
[math]\displaystyle{ d_f }[/math] [math]\displaystyle{ 1.864 }[/math]

Note that it has been claimed that the numerical values of exponents of percolation depend only on the dimension of lattice. However, percolation on WPSL is an exception in the sense that albeit it is two dimensional yet it does not belong to the same universality where all the planar lattices belong.[82][83]

Exponents for directed percolation

Directed percolation (DP) refers to percolation in which the fluid can flow only in one direction along bonds—such as only in the downward direction on a square lattice rotated by 45 degrees. This system is referred to as "1 + 1 dimensional DP" where the two dimensions are thought of as space and time.

[math]\displaystyle{ \nu_\perp }[/math] and [math]\displaystyle{ \nu_\parallel }[/math] are the transverse (perpendicular) and longitudinal (parallel) correlation length exponents, respectively. Also [math]\displaystyle{ \zeta = 1/z = \nu_\perp / \nu_\parallel }[/math]. It satisfies the hyperscaling relation [math]\displaystyle{ d/z = \eta + 2 \delta }[/math].

Another convention has been used for the exponent [math]\displaystyle{ z }[/math], which here we call [math]\displaystyle{ z' }[/math], is defined through the relation [math]\displaystyle{ \langle R^2 \rangle \sim t^{z'} }[/math], so that [math]\displaystyle{ z'= \nu_\parallel/\nu_\perp = 2/z }[/math].[84] It satisfies the hyperscaling relation [math]\displaystyle{ d z' = 2 \eta + 4 \delta }[/math].

[math]\displaystyle{ \delta }[/math] is the exponent corresponding to the behavior of the survival probability as a function of time: [math]\displaystyle{ P(t) \sim t^{-\delta} }[/math].

[math]\displaystyle{ \eta }[/math] (sometimes called [math]\displaystyle{ \mu }[/math]) is the exponent corresponding to the behavior of the average number of visited sites at time [math]\displaystyle{ t }[/math] (averaged over all samples including ones that have stopped spreading): [math]\displaystyle{ N(t) \sim t^{-\eta} }[/math].

The d(space)+1(time) dimensional exponents are given below.

d+1 1+1 2+1 3+1 4 – ε [85] Mean Field
β 0.276486(8) [86]
0.276 7(3) [87]
0.5834(30) [88]
0.580(4)[87]
0.813(9) [89]
0.818(4)[87]
0.82205[85]
[math]\displaystyle{ 1 - \frac{\varepsilon}{6} }[/math] 1
δ,α 0.159464(6) [86]
0.15944(2)[87]
0.4505(1) [88]
0.451(3)[84]
0.4509(5) [90]
0.4510(4) [87]

0.460(6)[91]

0.732(4) [92]
0.7398(10) [87]
0.73717 [93]
[math]\displaystyle{ 1 - \frac{\varepsilon}{4} }[/math] 1
η,θ 0.313686(8) [86]
0.31370(5) [87]
0.2303(4) [90]
0.2307(2) [87]
0.2295(10) [88]

0.229(3) [84]
0.214(8) [91]

0.1057(3)[87]
0.114(4) [89]
0.12084 [93]
[math]\displaystyle{ \nu_\parallel }[/math] 1.733847(6) [86]
1.733825(25) [94]

1.7355(15) [87] 1.73(2)[95]

1.16(5)[95]
1.287(2) [87]
1.295(6) [84]
1.106(3) [87]
1.11(1) [89]
1.10571 [93]
[math]\displaystyle{ \nu_\perp }[/math] 1.096854(4) [86]

1.096844(14) [94]
1.0979(10) [87]

0.7333(75) [92]
0.729(1) [87]
0.584(5) [92]
0.582(2) [87]
0.58360 [93]
[math]\displaystyle{ \frac12 + \frac{\varepsilon}{16} }[/math] [math]\displaystyle{ \frac12 }[/math]
[math]\displaystyle{ z=2/z' }[/math] 1.580745(10) [86]
1.5807(2) [87]
1.7660(16)[92]
1.765(3)[84]
1.766(2) [88]
1.7665(2) [87]
1.7666(10) [90]
1.88746 [93]
1.8990(4) [87]
1.901(5) [92]
[math]\displaystyle{ 2 - \frac{\varepsilon}{12} }[/math] 2
γ 2.277730(5) = 41/18?,[86]
2.278(2) [96]
1.595(18) [88]
1.237(23) [89]
1
τ 2.112(5),[97]
2.1077(13),[98]
2.10825(8) [86]

Scaling relations for directed percolation

[math]\displaystyle{ \beta = \frac{\tau-2}{\sigma} }[/math]

[math]\displaystyle{ \gamma = \frac{3-\tau}{\sigma} }[/math]

[math]\displaystyle{ \tau = 2 + \frac{2}{1+\gamma/\beta} }[/math] [98]

[math]\displaystyle{ \tilde \tau = \nu_\parallel-\beta }[/math] [86]

[math]\displaystyle{ \eta = \gamma/\nu_\parallel-1 }[/math]

[math]\displaystyle{ d_\mathrm{DP} = 2 - \beta/\nu_\parallel }[/math] [99]


[math]\displaystyle{ d_{b,\mathrm{DP}} = 2 - 2\beta/\nu_\parallel }[/math][99]

[math]\displaystyle{ \Delta = \beta + \gamma }[/math]

[math]\displaystyle{ dz' = 2 \eta + 4 \delta }[/math]

[math]\displaystyle{ d/z = \eta + 2 \delta }[/math]

Exponents for dynamic percolation

For dynamic percolation (epidemic growth of ordinary percolation clusters), we have

[math]\displaystyle{ P(t) \sim L^{-\beta/\nu} \sim (t^{1/d_\mathrm{min}})^{-\beta/\nu} = t^{-\delta} }[/math], implying


[math]\displaystyle{ \delta = \frac{\beta}{\nu d_\mathrm{min}} = \frac{d - d_f}{d_\mathrm{min}} }[/math]

For [math]\displaystyle{ N(t)\sim t^\eta }[/math], consider [math]\displaystyle{ N(\le s) \sim s^{3-\tau} \sim R^{d_f(3-\tau)} \sim t^{d_f(3-\tau)/d_\mathrm{min}} }[/math], and taking the derivative with respect to [math]\displaystyle{ t }[/math] yields [math]\displaystyle{ N(t)\sim t^{d_f(3-\tau)/d_\mathrm{min}-1} }[/math], implying

[math]\displaystyle{ \eta = \frac{d_f(3-\tau)}{d_\mathrm{min}}-1 = \frac{2 d_f - d}{d_\mathrm{min}}-1 }[/math]

Also, [math]\displaystyle{ z = d_\mathrm{min} }[/math]

Using exponents above, we find

d: 2 3 4 5 6 – ε Mean Field
[math]\displaystyle{ \delta }[/math] 0.09212 0.34681 0.59556 0.8127 1
[math]\displaystyle{ \eta,\mu }[/math] 0.584466 0.48725 0.30233 0.1314 0

See also

Notes

  1. For higher-order terms in the [math]\displaystyle{ \varepsilon }[/math] expansions, see.[18][19][20]

References

  1. 1.0 1.1 Adler, Joan; Moshe, Moshe; Privman, Vladimir (1983). "Chapter 2: Corrections to Scaling for Percolation". in Deustscher, G.. Percolation Structures and Processes, Ann. Israel Phys. Soc. 5. Adam Hilger, Bristol. pp. 397–423. 
  2. 2.0 2.1 2.2 2.3 Herrmann, H. J.; D. C. Hong; H. E. Stanley (1984). "Backbone and elastic backbone of percolation clusters obtained by the new method of 'burning'". J. Phys. A: Math. Gen. 17 (5): L261–L266. doi:10.1088/0305-4470/17/5/008. Bibcode1984JPhA...17L.261H. 
  3. 3.0 3.1 3.2 Grassberger, Peter (1992). "Spreading and backbone dimensions of 2D percolation". J. Phys. A: Math. Gen. 25 (21): 5475–5484. doi:10.1088/0305-4470/25/21/009. Bibcode1992JPhA...25.5475G. 
  4. 4.0 4.1 4.2 4.3 4.4 4.5 Grassberger, Peter (1999). "Conductivity exponent and backbone dimension in 2-d percolation". Physica A 262 (3–4): 251–263. doi:10.1016/S0378-4371(98)00435-X. Bibcode1999PhyA..262..251G. 
  5. 5.0 5.1 Ziff, R. M. (1999). "Exact critical exponent for the shortest-path scaling function in percolation". J. Phys. A: Math. Gen. 32 (43): L457–L459. doi:10.1088/0305-4470/32/43/101. Bibcode1999JPhA...32L.457Z. 
  6. 6.0 6.1 6.2 Nolin, Pierre; Wei Qian; Xin Sun; Zijie Zhuang (2023). "Backbone exponent for two-dimensional percolation". arXiv:2309.05050 [math.PR].
  7. Stauffer, D.; A. Aharony (1999). "Density profile of the incipient infinite percolation cluster". International Journal of Modern Physics C 10 (5): 935–940. doi:10.1142/S0129183199000735. Bibcode1999IJMPC..10..935S. 
  8. Binder, K.; P. C. Hohenberg (1972). "Phase Transitions and Static Spin Correlations in Ising Models with Free Surfaces". Physical Review B 6 (9): 3461–3487. doi:10.1103/PhysRevB.6.3461. Bibcode1972PhRvB...6.3461B. https://link.aps.org/doi/10.1103/PhysRevB.6.3461. 
  9. 9.0 9.1 De'Bell, Keith (1980). Surface effects in percolation (PhD Thesis). University of London.
  10. 10.0 10.1 10.2 10.3 10.4 DeBell; J. Essam (1980). "Series expansion studies of percolation at a surface". J. Phys. C: Solid State Phys. 13 (25): 4811–4821. doi:10.1088/0022-3719/13/25/023. Bibcode1980JPhC...13.4811D. 
  11. 11.0 11.1 11.2 11.3 11.4 Binder, K. (1981). "Critical Behaviour at Surfaces". in Domb, C.; Lebowitz, J. L.. Phase Transitions and Critical Phenomena, Volume 8. Academic Press. pp. 1–144. ISBN 978-0122203084. 
  12. Lubensky, T. C.; M. H. Rubin (1975). "Critical phenomena in semi-infinite systems. I. [math]\displaystyle{ \epsilon }[/math] expansion for positive extrapolation length". Physical Review B 11 (11): 4533–4546. doi:10.1103/PhysRevB.11.4533. Bibcode1975PhRvB..11.4533L. https://link.aps.org/doi/10.1103/PhysRevB.11.4533. 
  13. Pleimling, M (2004). "Critical phenomena at perfect and non-perfect surfaces". Journal of Physics A: Mathematical and General 37 (19): R79–R115. doi:10.1088/0305-4470/37/19/R01. 
  14. Reynolds, P. J.; H. E. Stanley; W. Klein (1977). "Ghost fields, pair connectedness, and scaling: exact results in one-dimensional percolation". Journal of Physics A: Mathematical and General 10 (11): L203–L209. doi:10.1088/0305-4470/10/11/007. Bibcode1977JPhA...10L.203R. https://doi.org/10.1088/0305-4470/10/11/007. 
  15. Essam, J. W. (1980). "Percolation theory". Rep. Prog. Phys. 43 (7): 833–912. doi:10.1088/0034-4885/43/7/001. Bibcode1980RPPh...43..833E. http://stacks.iop.org/0034-4885/43/i=7/a=001. 
  16. Harris, A. B.; T. C. Lubensky; W. K. Holcomb; C. Dasgupta (1975). "Renormalization-group approach to percolation problems". Physical Review Letters 35 (6): 327–330. doi:10.1103/PhysRevLett.35.327. Bibcode1975PhRvL..35..327H. https://repository.upenn.edu/cgi/viewcontent.cgi?article=1329&context=physics_papers. 
  17. Priest, R. G.; T. C. Lubensky (1976). "Critical properties of two tensor models with application to the percolation problem". Physical Review B 13 (9): 4159–4171. doi:10.1103/PhysRevB.13.4159. Bibcode1976PhRvB..13.4159P. https://link.aps.org/doi/10.1103/PhysRevB.13.4159. 
  18. Alcantara Bonfim, 0. F.; J E Kirkham; A J McKane (1981). "Critical exponents for the percolation problem and the Yang-Lee edge singularity". J. Phys. A: Math. Gen. 14 (9): 2391–2413. doi:10.1088/0305-4470/14/9/034. Bibcode1981JPhA...14.2391D. 
  19. 19.00 19.01 19.02 19.03 19.04 19.05 19.06 19.07 19.08 19.09 19.10 19.11 19.12 19.13 19.14 19.15 19.16 19.17 19.18 19.19 19.20 19.21 19.22 19.23 19.24 19.25 19.26 Gracey, J. A. (2015). "Four loop renormalization of φ^3 theory in six dimensions". Phys. Rev. D 92 (2): 025012. doi:10.1103/PhysRevD.92.025012. Bibcode2015PhRvD..92b5012G. 
  20. 20.00 20.01 20.02 20.03 20.04 20.05 20.06 20.07 20.08 20.09 20.10 20.11 20.12 20.13 20.14 20.15 20.16 20.17 20.18 20.19 20.20 20.21 20.22 20.23 20.24 20.25 Borinsky, M; J. A. Gracey; M. V. Kompaniets; O. Schnetz (2021). "Five loop renormalization of phi^3 theory with applications to the Lee-Yang edge singularity and percolation theory". Physical Review D 103: 116024. doi:10.1103/PhysRevD.103.116024. 
  21. Sykes, M. F.; M. Glen; D. S. Gaunt (1974). "The percolation probability for the site problem on the triangular lattice". J. Phys. A: Math. Gen. 7 (9): L105–L108. doi:10.1088/0305-4470/7/9/002. Bibcode1974JPhA....7L.105S. 
  22. 22.0 22.1 22.2 22.3 22.4 22.5 Kirkpatrick, Scott (1976). "Percolation phenomena in higher dimensions: Approach to the mean-field limit". Phys. Rev. Lett. 36 (2): 69–72. doi:10.1103/PhysRevLett.36.69. Bibcode1976PhRvL..36...69K. 
  23. 23.0 23.1 23.2 Sur, A.; Joel L. Lebowitz; J. Marro; M. H. Kalos; S. Kirkpatrick (1976). "Monte Carlo Studies of Percolation Phenomena for a Simple Cubic Lattice". J. Stat. Phys. 15 (5): 345–353. doi:10.1007/BF01020338. Bibcode1976JSP....15..345S. 
  24. Adler, Joan; Yigal Meir; Amnon Aharony; A. B. Harris; Lior Klein (1990). "Low-Concentration Series in General Dimension". Journal of Statistical Physics 58 (3/4): 511–538. doi:10.1007/BF01112760. Bibcode1990JSP....58..511A. 
  25. 25.0 25.1 25.2 25.3 25.4 25.5 25.6 25.7 25.8 Fayfar, Sean; Bretaña, Alex; Montfrooij, Wouter (2021-01-15). "Protected percolation: a new universality class pertaining to heavily-doped quantum critical systems". Journal of Physics Communications 5 (1): 015008. doi:10.1088/2399-6528/abd8e9. ISSN 2399-6528. Bibcode2021JPhCo...5a5008F. 
  26. 26.00 26.01 26.02 26.03 26.04 26.05 26.06 26.07 26.08 26.09 26.10 26.11 26.12 26.13 26.14 26.15 26.16 Adler, J.; Y. Meir; A. Aharony; A.B. Harris (1990). "Series Study of Percolation Moments in General Dimension". Phys. Rev. B 41 (13): 9183–9206. doi:10.1103/PhysRevB.41.9183. PMID 9993262. Bibcode1990PhRvB..41.9183A. https://repository.upenn.edu/physics_papers/368. 
  27. 27.0 27.1 27.2 Gaunt, D. S.; H. Ruskin (1978). "Bond percolation processes in d dimensions". J. Phys. A: Math. Gen. 11 (7): 1369–1380. doi:10.1088/0305-4470/11/7/025. Bibcode1978JPhA...11.1369G. 
  28. 28.0 28.1 28.2 28.3 28.4 28.5 Nakanishi, H; H. E. Stanley (1980). "Scaling studies of percolation phenomena in systems of dimensionality of two to seven: Cluster numbers". Physical Review B 22 (5): 2466–2488. doi:10.1103/PhysRevB.22.2466. Bibcode1980PhRvB..22.2466N. 
  29. 29.0 29.1 29.2 29.3 29.4 29.5 29.6 29.7 Lorenz, C. D.; R. M. Ziff (1998). "Precise determination of the bond percolation thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices". Phys. Rev. E 57 (1): 230–236. doi:10.1103/PhysRevE.57.230. Bibcode1998PhRvE..57..230L. 
  30. 30.0 30.1 30.2 30.3 30.4 30.5 30.6 30.7 30.8 Ballesteros, H. G.; L. A. Fernández; V. Martín-Mayor; A. Muñoz Sudepe; G. Parisi; J. J. Ruiz-Lorenzo (1997). "Measures of critical exponents in the four-dimensional site percolation". Physics Letters B 400 (3–4): 346–351. doi:10.1016/S0370-2693(97)00337-7. Bibcode1997PhLB..400..346B. 
  31. 31.0 31.1 31.2 31.3 Jan, N.; D. Stauffer (1998). "Random Site Percolation in Three Dimensions". Int. J. Mod. Phys. C 9 (2): 341–347. doi:10.1142/S0129183198000261. Bibcode1998IJMPC...9..341J. 
  32. 32.0 32.1 32.2 32.3 32.4 32.5 32.6 Tiggemann, D. (2001). "Simulation of percolation on massively parallel computers". Int. J. Mod. Phys. C 12 (6): 871–878. doi:10.1142/S012918310100205X. Bibcode2001IJMPC..12..871T. 
  33. 33.0 33.1 Levenshteĭn, M. E.; B. I. Shklovskiĭ; M. S. Shur; A. L. Éfros (1975). "The relation between the critical exponents of percolation theory". Zh. Eksp. Teor. Fiz. 69: 386–392. Bibcode1975JETP...42..197L. ,
  34. 34.0 34.1 34.2 34.3 Ballesteros, P. N.; L. A. Fernández; V. Martín-Mayor; A. Muñoz Sudepe; G. Parisi; J. J. Ruiz-Lorenzo (1999). "Scaling corrections: site percolation and Ising model in three dimensions". Journal of Physics A 32 (1): 1–13. doi:10.1088/0305-4470/32/1/004. Bibcode1999JPhA...32....1B. 
  35. 35.0 35.1 Wang, J.; Z. Zhou; W. Zhang; T. M. Garoni; Y. Deng (2013). "Bond and site percolation in three dimensions". Physical Review E 87 (5): 052107. doi:10.1103/PhysRevE.87.052107. PMID 23767487. Bibcode2013PhRvE..87e2107W. ,
  36. Hu, H.; H. W. Blöte; R. M. Ziff; Y. Deng (2014). "Short-range correlations in percolation at criticality". Physical Review E 90 (4): 042106. doi:10.1103/PhysRevE.90.042106. PMID 25375437. Bibcode2014PhRvE..90d2106H. 
  37. 37.0 37.1 37.2 37.3 37.4 Xu, Xiao; Wang, Junfeng; Lv, Jian-Ping; Deng, Youjin (2014). "Simultaneous analysis of three-dimensional percolation models". Frontiers of Physics 9 (1): 113–119. doi:10.1007/s11467-013-0403-z. Bibcode2014FrPhy...9..113X. 
  38. 38.0 38.1 38.2 38.3 Koza, Zbigniew; Jakub Poła (2016). "From discrete to continuous percolation in dimensions 3 to 7". Journal of Statistical Mechanics: Theory and Experiment 2016 (10): 103206. doi:10.1088/1742-5468/2016/10/103206. Bibcode2016JSMTE..10.3206K. 
  39. 39.0 39.1 LeClair, André; Joshua Squires (2018). "Conformal bootstrap for percolation and polymers". Journal of Statistical Mechanics: Theory and Experiment 2018 (12): 123105. doi:10.1088/1742-5468/aaf10a. Bibcode2018arXiv180208911L. 
  40. 40.0 40.1 40.2 40.3 40.4 40.5 40.6 40.7 Zhang, Zhongjin; Pengcheng Hou; Sheng Fang; Hao Hu; Youjin Deng (2021). "Critical exponents and universal excess cluster number of percolation in four and five dimensions". Physica A: Statistical Mechanics and Its Applications 580: 126124. doi:10.1016/j.physa.2021.126124. Bibcode2021PhyA..58026124Z. 
  41. 41.0 41.1 Tan, Xiao-Jun; Deng, You-Jin; Jacobsen, Jesper Lykke (2020). "N-cluster correlations in four- and five-dimensional percolation" (in en). Frontiers of Physics 15 (4): 41501. doi:10.1007/s11467-020-0972-6. ISSN 2095-0462. Bibcode2020FrPhy..1541501T. https://link.springer.com/10.1007/s11467-020-0972-6. 
  42. Sykes, M. F.; D. S. Gaunt; J. W. Essam (1976). "The percolation probability for the site problem on the face-centred cubic lattice". J. Phys. A: Math. Gen. 9 (5): L43–L46. doi:10.1088/0305-4470/9/5/002. Bibcode1976JPhA....9L..43S. 
  43. Tiggemann, D. (2006). "Percolation on growing lattices". Int. J. Mod. Phys. C 17 (8): 1141–1150. doi:10.1142/S012918310600962X. Bibcode2006IJMPC..17.1141T. 
  44. 44.0 44.1 44.2 44.3 44.4 44.5 Mertens, Stephan; Cristopher Moore (2018). "Percolation Thresholds and Fisher Exponents in Hypercubic Lattices". Physical Review E 98 (2): 022120. doi:10.1103/PhysRevE.98.022120. PMID 30253462. Bibcode2018PhRvE..98b2120M. 
  45. 45.0 45.1 45.2 45.3 45.4 Paul, Gerald; R. M. Ziff; H. E. Stanley (2001). "Percolation threshold, Fisher exponent, and shortest path exponent for four and five dimensions". Phys. Rev. E 64 (2): 026115. doi:10.1103/PhysRevE.64.026115. PMID 11497659. Bibcode2001PhRvE..64b6115P. 
  46. Deng, Youjin; Henk W. J. Blöte (2005). "Monte Carlo study of the site-percolation model in two and three dimensions". Phys. Rev. E 72 (1): 016126. doi:10.1103/PhysRevE.72.016126. PMID 16090055. Bibcode2005PhRvE..72a6126D. http://resolver.tudelft.nl/uuid:e987a69f-6dde-4d8d-a616-bfcde4d5bdac. 
  47. Jan, N; Hong, D C; Stanley, H E (1985-10-21). "The fractal dimension and other percolation exponents in four and five dimensions". Journal of Physics A: Mathematical and General 18 (15): L935–L939. doi:10.1088/0305-4470/18/15/006. ISSN 0305-4470. Bibcode1985JPhA...18L.935J. https://iopscience.iop.org/article/10.1088/0305-4470/18/15/006. 
  48. Kammerer, A.; F. Höfling; T. Franosch (2008). "Cluster-resolved dynamic scaling theory and universal corrections for transport on percolating systems". Europhys. Lett. 84 (6): 66002. doi:10.1209/0295-5075/84/66002. Bibcode2008EL.....8466002K. 
  49. Ziff, R. M.; F. Babalievski (1999). "Site percolation on the Penrose rhomb lattice". Physica A 269 (2–4): 201–210. doi:10.1016/S0378-4371(99)00166-1. Bibcode1999PhyA..269..201Z. 
  50. 50.0 50.1 Ziff, R. M. (2011). "Correction-to-scaling exponent for two-dimensional percolation". Phys. Rev. E 83 (2): 020107. doi:10.1103/PhysRevE.83.020107. PMID 21405805. Bibcode2011PhRvE..83b0107Z. 
  51. Aharony, Amnon; Asikainen, Joonas (2003). "Fractal dimension and corrections to scaling for critical Potts clusters". Fractals, Supplementary Issue 11 (1): 3–7. doi:10.1142/S0218348X03001665. 
  52. Gimel, Jean-Christophe; Taco Nicolai; Dominique Durand (2000). "Size distribution of percolating clusters on cubic lattices". J. Phys. A: Math. Gen. 33 (43): 7687–7697. doi:10.1088/0305-4470/33/43/302. Bibcode2000JPhA...33.7687G. 
  53. 53.0 53.1 Kozlov, B.; M. Laguës (2010). "Universality of 3D percolation exponents and first-order corrections to scaling for conductivity exponents". Physica A 389 (23): 5339–5346. doi:10.1016/j.physa.2010.08.002. Bibcode2010PhyA..389.5339K. 
  54. Houghton, A.; J. S. Reeve; D. J. Wallace (1978). "High-order behavior in phi^3 field theories and the percolation problem". Phys. Rev. B 17 (7): 2956. doi:10.1103/PhysRevB.17.2956. Bibcode1978PhRvB..17.2956H. 
  55. 55.0 55.1 Alexander, S.; R. Orbach (1982). "Density of states on fractals : 'fractons'". Journal de Physique Lettres 43 (17): L625–L631. doi:10.1051/jphyslet:019820043017062500. https://hal.archives-ouvertes.fr/jpa-00232103/file/ajp-jphyslet_1982_43_17_625_0.pdf. 
  56. 56.0 56.1 Milovanov, A. V. (1997). "Topological proof for the Alexander-Orbach conjecture". Phys. Rev. E 56 (3): 2437–2446. doi:10.1103/PhysRevE.56.2437. Bibcode1997PhRvE..56.2437M. 
  57. Cen, Wei; Dongbing Liu; Bingquan Mao (2012). "Molecular trajectory algorithm for random walks on percolation systems at criticality in two and three dimensions". Physica A 391 (4): 925–929. doi:10.1016/j.physa.2011.01.003. Bibcode2012PhyA..391..925C. 
  58. Gingold, David B.; C. J. Lobb (1990). "Percolative conduction in three dimensions". Physical Review B 42 (13): 8220–8224. doi:10.1103/PhysRevB.42.8220. PMID 9994994. Bibcode1990PhRvB..42.8220G. 
  59. Normand, Jean-Marie; Hans J. Herrmann (1995). "Precise determination of the conductivity exponent of 3D percolation using "Percola"". International Journal of Modern Physics C 6 (6): 813. doi:10.1142/S0129183195000678. Bibcode1995IJMPC...6..813N. 
  60. Clerc, Jean-Marie; V. A. Podolskiy; A. K. Sarychev (2000). "Precise determination of the conductivity exponent of 3D percolation using exact numerical renormalization". The European Physical Journal B 15 (3): 507–516. doi:10.1007/s100510051153. Bibcode2000EPJB...15..507C. 
  61. Argyrakis, P.; R. Kopelman (1984). "Random walk on percolation clusters". Physical Review B 29 (1): 511–514. doi:10.1103/PhysRevB.29.511. Bibcode1984PhRvB..29..511A. 
  62. 62.0 62.1 62.2 Cardy, John (1984). "Conformal invariance and surface critical behavior". Nuclear Physics B 240 (4): 514–532. doi:10.1016/0550-3213(84)90241-4. Bibcode1984NuPhB.240..514C. 
  63. Vanderzande, C. (1988). "Surface fractal dimension of two-dimensional percolation". J. Phys. A: Math. Gen. 21 (3): 833–837. doi:10.1088/0305-4470/21/3/039. Bibcode1988JPhA...21..833V. 
  64. 64.0 64.1 64.2 Grassberger, Peter (1992). "Numerical studies of critical percolation in three dimensions". J. Phys. A: Math. Gen. 25 (22): 5867–5888. doi:10.1088/0305-4470/25/22/015. Bibcode1992JPhA...25.5867G. 
  65. 65.0 65.1 Deng, Youjin; Henk W. J. Blöte (2005). "Surface critical phenomena in three-dimensional percolation". Phys. Rev. E 71 (1): 016117. doi:10.1103/PhysRevE.71.016117. PMID 15697668. Bibcode2005PhRvE..71a6117D. http://resolver.tudelft.nl/uuid:367d3e20-73b0-4368-bfaa-a1340c3ab6e7. 
  66. 66.0 66.1 66.2 66.3 66.4 66.5 66.6 Diehl, H. W.; P. M.Lam (1989). "Semi-infinite Potts model and percolation at surfaces". Z. Phys. B 74 (3): 395–401. doi:10.1007/BF01307889. Bibcode1989ZPhyB..74..395D. 
  67. Hansen, A; P. M. Lam; S. Roux (1981). "Surface order parameter in three-dimensional percolation". J. Phys. A: Math. Gen. 22 (13): 2635. doi:10.1088/0305-4470/22/13/056. 
  68. Deng, Youjin; H. Bl\:ote (2004). "Anisotropic limit of the bond-percolation model and conformal invariance in curved geometries". Phys. Rev. E 69 (6): 066129. doi:10.1103/PhysRevE.69.066129. PMID 15244689. Bibcode2004PhRvE..69f6129D. 
  69. 69.0 69.1 69.2 Baek, Seung Ki; Petter Minnhagen; Beom Jun Kim (2010). "Surface and bulk criticality in midpoint percolation". Phys. Rev. E 81 (4): 041108. doi:10.1103/PhysRevE.81.041108. PMID 20481678. Bibcode2010PhRvE..81d1108B. 
  70. Rintoul, M. D.; H. Nakanishi (1992). "A precise determination of the backbone fractal dimension on two-dimensional percolation clusters". J. Phys. A: Math. Gen. 25 (15): L945. doi:10.1088/0305-4470/25/15/008. Bibcode1992JPhA...25L.945R. 
  71. Deng, Youjin; Henk W. J. Blöte; Bernard Neinhuis (2004). "Backbone exponents of the two-dimensional q-state Potts model: A Monte Carlo investigation". Phys. Rev. E 69 (2): 026114. doi:10.1103/PhysRevE.69.026114. PMID 14995527. Bibcode2004PhRvE..69b6114D. http://resolver.tudelft.nl/uuid:e59d112a-93de-410e-96aa-b71c217fed77. 
  72. Xu, Xiao; Wang, Junfeng; Zhou, Zongzheng; Garoni, Timothy M.; Deng, Youjin (2014). "Geometric structure of percolation clusters". Physical Review E 89 (1): 012120. doi:10.1103/PhysRevE.89.012120. PMID 24580185. Bibcode2014PhRvE..89a2120X. 
  73. Rintoul, M. D.; H. Nakanishi (1994). "A precise characterization of three-dimensional percolating backbones". J. Phys. A: Math. Gen. 27 (16): 5445–5454. doi:10.1088/0305-4470/27/16/011. Bibcode1994JPhA...27.5445R. 
  74. 74.0 74.1 Moukarzel, C. (1994). "A Fast Algorithm for Backbones". Int. J. Mod. Phys. C 9 (6): 887–895. doi:10.1142/S0129183198000844. 
  75. Grassberger, P. (1985). "On the spreading of two-dimensional percolation". J. Phys. A: Math. Gen. 18 (4): L215–L219. doi:10.1088/0305-4470/18/4/005. Bibcode1985JPhA...18L.215G. 
  76. 76.0 76.1 Herrmann, Hans J.; H. Eugene Stanley (1988). "The fractal dimension of the minimum path in two- and three-dimensional percolation". J. Phys. A: Math. Gen. 21 (5): L829–L833. doi:10.1088/0305-4470/17/5/008. Bibcode1984JPhA...17L.261H. 
  77. Deng, Youjin; Wei Zhang; Timothy M. Garoni; Alan D. Sokal; Andrea Sportiello (2010). "Some geometric critical exponents for percolation and the random-cluster model". Physical Review E 81 (2): 020102(R). doi:10.1103/PhysRevE.81.020102. PMID 20365513. Bibcode2010PhRvE..81b0102D. 
  78. 78.0 78.1 Zhou, Zongzheng; Ji Yang; Youjin Deng; Robert M. Ziff (2012). "Shortest-path fractal dimension for percolation in two and three dimensions". Physical Review E 86 (6): 061101. doi:10.1103/PhysRevE.86.061101. PMID 23367887. Bibcode2012PhRvE..86a1101G. 
  79. Grassberger, Peter (1999). "Pair connectedness and shortest-path scaling in critical percolation". J. Phys. A: Math. Gen. 32 (35): 6233–6238. doi:10.1088/0305-4470/32/35/301. Bibcode1999JPhA...32.6233G. 
  80. Brereton, Tim; Christian Hirsch; Volker Schmidt (2014). "A critical exponent for shortest-path scaling in continuum percolation". J. Phys. A: Math. Theor. 47 (50): 505003. doi:10.1088/1751-8113/47/50/505003. Bibcode2014JPhA...47X5003B. 
  81. Brereton, Tim; Hirsch, Christian; Schmidt, Volker; Kroese, Dirk (2014-12-19). "A critical exponent for shortest-path scaling in continuum percolation". Journal of Physics A: Mathematical and Theoretical 47 (50): 505003. doi:10.1088/1751-8113/47/50/505003. ISSN 1751-8113. https://iopscience.iop.org/article/10.1088/1751-8113/47/50/505003. 
  82. Hassan, M. K.; Rahman, M. M. (2015). "Percolation on a multifractal scale-free planar stochastic lattice and its universality class". Physical Review E 92 (4): 040101. doi:10.1103/PhysRevE.92.040101. PMID 26565145. Bibcode2015PhRvE..92d0101H. 
  83. Hassan, M. K.; Rahman, M. M. (2016). "Universality class of site and bond percolation on multifractal scale-free planar stochastic lattice". Physical Review E 94 (4): 042109. doi:10.1103/PhysRevE.94.042109. PMID 27841467. Bibcode2016PhRvE..94d2109H. 
  84. 84.0 84.1 84.2 84.3 84.4 Grassberger, P.; Y. Zhang (1996). "'Self-organized' formulation of standard percolation phenomena". Physica A 224 (1–2): 169. doi:10.1016/0378-4371(95)00321-5. Bibcode1996PhyA..224..169G. 
  85. 85.0 85.1 Janssen, H. K.; Täuber, U. C. (2005). "The field theory approach to percolation processes". Annals of Physics 315 (1): 147–192. doi:10.1016/j.aop.2004.09.011. Bibcode2005AnPhy.315..147J. 
  86. 86.0 86.1 86.2 86.3 86.4 86.5 86.6 86.7 86.8 Jensen, I. (1999). "Low-density series expansions for directed percolation: I. A new efficient algorithm with applications to the square lattice". J. Phys. A 32 (48): 5233–5249. doi:10.1088/0305-4470/32/28/304. Bibcode1999JPhA...32.5233J. 
  87. 87.00 87.01 87.02 87.03 87.04 87.05 87.06 87.07 87.08 87.09 87.10 87.11 87.12 87.13 87.14 87.15 87.16 87.17 Wang, Junfeng; Zongzheng Zhou; Qingquan Liu; Timothy M. Garoni; Youjin Deng (2013). "High-precision Monte Carlo study of directed percolation in (d + 1) dimensions". Phys. Rev. E 88 (4): 042102. doi:10.1103/PhysRevE.88.042102. PMID 24229111. Bibcode2013PhRvE..88d2102W. 
  88. 88.0 88.1 88.2 88.3 88.4 Voigt, C. A.; Ziff, R. M. (1997). "Epidemic analysis of the second-order transition in the Ziff-Gulari-Barshad surface-reaction model". Phys. Rev. E 56 (6): R6241–R6244. doi:10.1103/PhysRevE.56.R6241. Bibcode1997PhRvE..56.6241V. 
  89. 89.0 89.1 89.2 89.3 Jensen, I. (1992). "Critical behavior of the three-dimensional contact process". Phys. Rev. A 45 (2): R563–R566. doi:10.1103/PhysRevA.45.R563. PMID 9907104. Bibcode1992PhRvA..45..563J. 
  90. 90.0 90.1 90.2 Perlsman, E.; S. Havlin (2002). "Method to estimate critical exponents using numerical studies". EPL 58 (2): 176–181. doi:10.1209/epl/i2002-00621-7. Bibcode2002EL.....58..176P. https://semanticscholar.org/paper/502191a5395e90141d8f22da5576825a693cda5a. 
  91. 91.0 91.1 Grassberger, P. (1989). "Directed percolation in 2+1 dimensions". J. Phys. A: Math. Gen. 22 (17): 3673–3679. doi:10.1088/0305-4470/22/17/032. Bibcode1989JPhA...22.3673G. 
  92. 92.0 92.1 92.2 92.3 92.4 Henkel, M.; H. Hinrichsen; S. Lŭbeck (2008). Non-equilibrium phase transitions, Vol. 1: Absorbing phase transitions. Springer, Dordrecht. 
  93. 93.0 93.1 93.2 93.3 93.4 Janssen, H. K. (1981). "On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary state". Annals of Physics 42 (2): 151–154. doi:10.1007/BF01319549. Bibcode1981ZPhyB..42..151J. 
  94. 94.0 94.1 Jensen, Iwan (1996). "Low-density series expansions for directed percolation on square and triangular lattices". J. Phys. A: Math. Gen. 29 (22): 7013–7040. doi:10.1088/0305-4470/29/22/007. Bibcode1996JPhA...29.7013J. 
  95. 95.0 95.1 Amaral, L. A. N.; A.-L. Barabási; S. V. Buldyrev; S. T. Harrington; S. Havlin; R. Sadr-Lahijany; H. E. Stanley (1995). "Avalanches and the directed percolation depinning model: Experiments, simulations, and theory". Phys. Rev. E 51 (5): 4655–4673. doi:10.1103/PhysRevE.51.4655. PMID 9963178. Bibcode1995PhRvE..51.4655A. 
  96. Essam, J. W.; A. J. Guttmann; K. De'Bell (1988). "On two-dimensional directed percolation". J. Phys. A 21 (19): 3815–3832. doi:10.1088/0305-4470/21/19/018. Bibcode1988JPhA...21.3815E. 
  97. Dhar, Deepak; Mustansir Barma (1981). "Monte Carlo simulationof directed percolationon a square lattice". J. Phys. C: Solid State Phys. 14 (1): Ll-L6. doi:10.1088/0022-3719/14/1/001. Bibcode1981JPhC...14L...1D. 
  98. 98.0 98.1 Owczarek, A. L.; A. Rechnitzer; R. Brak; A. J. Guttmann (1997). "On the hulls of directed percolation clusters". J. Physics A: Math. Gen. 30 (19): 6679. doi:10.1088/0305-4470/30/19/011. Bibcode1997JPhA...30.6679O. 
  99. 99.0 99.1 Deng, Youjin; Robert M. Ziff (2022). "The elastic and directed percolation backbone". J. Phys. A: Math. Theor. 55 (24): 244002. doi:10.1088/1751-8121/ac6843. Bibcode2022JPhA...55x4002D. 

Further reading

  • Stauffer, D.; Aharony, A. (1994), Introduction to Percolation Theory (2nd ed.), CRC Press, ISBN 978-0-7484-0253-3