Biography:Roman Balabin

From HandWiki
Revision as of 04:00, 9 February 2024 by Unex (talk | contribs) (over-write)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Roman M. Balabin
Роман Михайлович Балабин
NationalityRussia
Alma materGubkin University
Known forAnalytical chemistry
Vibrational spectroscopy
Scientific career
FieldsChemist
InstitutionsGubkin University
ETH Zurich
Doctoral advisorR. Z. Safieva
R. Zenobi

Roman M. Balabin (Russian: Роман Михайлович Балабин) is an analytical chemist. He received Ph.D. in petroleum chemistry from the Gubkin University (Moscow, 2013); his research interests include physical chemistry and applied spectroscopy.

Academic activity

Fuel analysis

Main page: Physics:Near-infrared spectroscopy

Roman Balabin and his collaborators have published a number of papers on comparing statistical methods based on near-infrared spectroscopy (NIRS), that can provide valuable functional group information about the sample,[1] for quality analysis of fuels and petroleum products.[2][3] In 2007—2008 Roman Balabin, Ravilya Safieva and Ekaterina Lomakina published two papers in Chemometrics and Intelligent Laboratory Systems where they compared modified versions of partial least squares regression (PLS) method with artificial neural networks (ANNs) for prediction of density, benzene content and ethanol content in gasoline.[4][5][6][7][8] In 2007—2011 this study was continued by a cycle of articles in Fuel and Energy & Fuels which showed that ANN/SVM[9][10] approach was superior to the linear and "quasi-nonlinear" calibration methods.[11][12][13][14][15][16][17] Two papers[18][19] in Analyst compared SVM regression with ANNs using NIRS data obtained from fourteen sets of petroleum products and benchmarked SVM for extrapolation problem (to predict the properties of samples outside the range used for the model calibration[20]):[21][22][23][24][25][26] it could be concluded that SVM-based data models have high precision and robustness[27] in small and noisy data sets ("in handling real-world, noisy, and variable spectra"[28]).[29][30] Two other papers published in Analytica Chimica Acta in 2011 were devoted to variable selection methods (including genetic algorithms[31])[32][33][34][35][36][37] and to benchmarking[38] of biodiesel classification models[15][39] that can be used for forensic identification purposes.[40]

Melamine detection

Main page: Chemistry:2008 Chinese milk scandal

In July 2011 Roman Balabin and Sergey Smirnov published in Talanta a paper "Melamine detection by mid- and near-infrared (MIR/NIR) spectroscopy" in which they proposed to use fourier transform[41] infrared spectroscopy to determine melamine in complex dairy products:[42] including liquid milk, infant formula, and milk powder. The authors observed no linear relationship between the vibrational spectrum of the milk sample and its melamine content, so they applied non-linear multivariate regression — such as partial least squares regression (PLS), polynomial PLS (Poly-PLS), artificial neural network (ANN), support vector regression (SVR), and least squares support vector machine (LS-SVM). An average of 600 samples for each food was used for the algorithm optimization and training: the "systematic study"[43] found that, applying the right data pre-treatment and the correct multivariate techniques, a limit of detection (LOD) below 1 ppm (0.76 ± 0.11 ppm[44]) could be reached. Furthermore, Balabin and Smirnov showed that Poly-PLS is able to predict only low melamine concentrations (<15 ppm).[45] So, the determination of melamine adulteration in infant formula and dairy milk ("safety assessment of dairy products"[46]) is possible with infrared-based analytical techniques:[47] "the application of NIR spectroscopy and multivariate modeling have proved to be very successful",[48] that was considered by professor Xiaonan Lu as a "significant achievement",[43] since the total time for melamine detection using spectroscopy methods were less than for almost all other previous methods.[42]

Quantum machine learning

Main page: Quantum machine learning

In August 2009 The Journal of Chemical Physics published online a paper "Neural network approach to quantum-chemistry data" authored by Roman Balabin and Ekaterina Lomakina; there they exploited the idea of a large[49] ANN-based quantum chemical database — 208 organic molecules containing only carbon, hydrogen, fluorine, oxygen and nitrogen — and different sets of molecular descriptors that could predict the density functional theory (DFT) energies without having to undertake a detailed DFT calculation on the system of interest,[50][51] since machine learning provides a means to convert the large volume of diverse, complex data into actionable knowledge.[52][53] In particular they applied neural networks to predict energies of the molecules ("QSPRs for basis-set effects"[54]);[55] this became a part of the organic chemistry community approach not only for enhancing the accuracy of hard modeling (e.g. ab initio calculations[56]) but also for making fast and accurate property predictions:[57][58] a possible scenario in which an algorithm decides or suggests internal parameters (or type) of density functional to be used for a given calculation.[59] Balabin and Lomakina continued their collaboration by publishing in Physical Chemistry Chemical Physics[57][54] a paper "Support vector machine regression (LS-SVM) — an alternative..." (June 2011) where SVMs were compared with ANNs for the basis-set effects estimation.[60][61]

Amino acids

Main page: Biology:Protein structure

A cycle of works[62][63] on the structures of the simplest amino acids (glycine and alanine) was started by Balabin in September 2009 with publication of a theoretical paper "Conformational equilibrium in glycine" in Chemical Physics Letters: ab initio computations based on focal-point analysis (FPA) scheme were performed on glycine (Gly) conformers.[64][65] A year later an experimental[66] jet-cooled glycine Raman spectrum — that showed six molecular vibrations in a region between 160 cm−1 and 450 cm−1 — was published in Journal of Physical Chemistry Letters: all the peaks could be "matched up with vibrations from the three lowest energy conformations by comparison to the computed frequencies".[67][68] Non-equilibrium conditions of jet-cooled molecular beam allowed to observe one "elusive" — previously experimentally unknown — conformation of Gly:[69] a conformer that is formed as a result of a complex interplay between intramolecular hydrogen bond and steric factors.[70][63][71] Equilibrium gas-phase Raman study, published in January 2012 in Physical Chemistry Chemical Physics — allowed an estimation of the relative enthalpies of three glycine rotamers by decomposition of a broad, unresolved spectral band:[72] however, the thermodynamic characterization was based on van’t Hoff equation, whose absolute accuracy might be questionable.[73][74]

In 2010, in addition to a theoretical study,[75] Balabin recorded the jet-cooled Raman spectrum of alanine: he reported observation of four conformers of this amino acid, including two new ones — that had not been reported in previous studies[76][77] — but the unambiguous identification of this pair was still questionable.[78] As a part of the cycle he also examined, in a search of gaseous zwitterion, the glycine-one water complex using vibrational spectroscopy: in addition to the most stable conformation, he was able to detect a small amount of two others by recording а low-frequency Raman spectrum (below 500 cm−1).[79][80] Professor Steven Bachrach thought that "an interesting side note [of the study was] that anharmonic corrections were necessary in order to match up the computed... frequencies with the experimental values".[81]

Zenobi group

As a part of Zenobi group at ETH Zurich[82][83][84] Roman Balabin was a co-author of a number of papers on theory and practice of mass spectrometry (MS). In 2010 a paper of Liang Zhu and HuanWen Chen applied EESI method to classify beer samples according to their type by principal component analysis (PCA);[85][86][87] Wai Siang Law "successfully" used the same combination of methods to study olive oils.[88][89] In 2011 Konstantin Barylyuk published a series of "careful"[90] MS experiments, complemented by DFT calculations, on synthetic supramolecular complexes, which interact with b-cyclodextrins solely through hydrophobic forces: "the study provided unambiguous evidence that hydrophobic interactions can be preserved in the gas phase"[91] and suggested that other macromolecular associations held together exclusively by hydrophobic interactions may survive without solvent[92][93][94][95][96][97] — at least on the millisecond timescales.[98][99] Andrea Amantonico and Pawel Urban[100][101][102] studied the profile of selected ("only a few"[103]) metabolites containing phosphate groups in single cells of "simple algae"[104] (Closterium)[105] using negative-mode MALDI-MS:[106][107][108][109][110] when combined with SVM method, this "proof-of-principle"[111] experiment made it possible to observe single cells[112][113] in distinct metabolic levels and classify individuals within cell populations;[114] the study itself contributed to the growing body of research suggesting that cell populations — previously assumed to be largely homogeneous — are in fact made up of subpopulations.[115][116][117][118]

List of works

Ph.D. thesis

  • Балабин, Роман Михайлович. Development of express methods based on vibrational spectroscopy for analysis of petroleum products and petrochemicals = Создание экспресс-методов анализа продуктов нефтепереработки и нефтехимии на основе колебательной спектроскопии : диссертация ... кандидата технических наук : 02.00.13 / Балабин Роман Михайлович; [Место защиты: Рос. гос. ун-т нефти и газа им. И.М. Губкина]. — Москва, 2013. — 116 с.: ил.

Selected publications

Selection of Roman Balabin's (h-index = 33) publications is based on 20+ citations before October 2018:[119]

List of selected publications
  • Balabin R. M., Smirnov S. V. Variable selection in near-infrared spectroscopy: Benchmarking of feature selection methods on biodiesel data // Analytica Chimica Acta. — 2011. — Vol. 692, iss. 1-2. — P. 63–72. — ISSN 0003-2670. — DOI:10.1016/j.aca.2011.03.006.
  • Balabin R. M., Safieva R. Z., Lomakina E. I. Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques // Analytica Chimica Acta. — 2010. — Vol. 671, iss. 1-2. — P. 27–35. — ISSN 0003-2670. — DOI:10.1016/j.aca.2010.05.013.
  • Balabin R. M., Safieva R. Z., Lomakina E. I. Comparison of linear and nonlinear calibration models based on near infrared (NIR) spectroscopy data for gasoline properties prediction // Chemometrics and Intelligent Laboratory Systems. — 2007. — Vol. 88, iss. 2. — P. 183–188. — ISSN 0169-7439. — DOI:10.1016/j.chemolab.2007.04.006.
  • Balabin R. M., Lomakina E. I. Support vector machine regression (SVR/LS-SVM) — an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data // The Analyst. — 2011. — Vol. 136, iss. 8. — P. 1703. — ISSN 0003-2654. — DOI:10.1039/c0an00387e.
  • Balabin R. M., Smirnov S. V. Melamine detection by mid- and near-infrared (MIR/NIR) spectroscopy: A quick and sensitive method for dairy products analysis including liquid milk, infant formula, and milk powder // Talanta. — 2011. — Vol. 85, iss. 1. — P. 562–568. — ISSN 0039-9140. — DOI:10.1016/j.talanta.2011.04.026.
  • Balabin R. M., Lomakina E. I., Safieva R. Z. Neural network (ANN) approach to biodiesel analysis: Analysis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy // Fuel. — 2011. — Vol. 90, iss. 5. — P. 2007–2015. — ISSN 0016-2361. — DOI:10.1016/j.fuel.2010.11.038.
  • Balabin R. M., Safieva R. Z. Gasoline classification by source and type based on near infrared (NIR) spectroscopy data // Fuel. — 2008. — Vol. 87, iss. 7. — P. 1096–1101. — ISSN 0016-2361. — DOI:10.1016/j.fuel.2007.07.018.
  • Balabin R. M., Safieva R. Z., Lomakina E. I. Wavelet neural network (WNN) approach for calibration model building based on gasoline near infrared (NIR) spectra // Chemometrics and Intelligent Laboratory Systems. — 2008. — Vol. 93, iss. 1. — P. 58–62. — ISSN 0169-7439. — DOI:10.1016/j.chemolab.2008.04.003.
  • Balabin R. M. Enthalpy difference between conformations of normal alkanes: Intramolecular basis set superposition error (BSSE) in the case of n-butane and n-hexane // The Journal of Chemical Physics. — 2008. — Vol. 129, iss. 16. — P. 164101. — ISSN 0021-9606. — DOI:10.1063/1.2997349.
  • Balabin R. M., Safieva R. Z. Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data // Analytica Chimica Acta. — 2011. — Vol. 689, iss. 2. — P. 190–197. — ISSN 0003-2670. — DOI:10.1016/j.aca.2011.01.041.
  • Syunyaev R. Z., Balabin R. M., Akhatov I. S., Safieva J. O. Adsorption of Petroleum Asphaltenes onto Reservoir Rock Sands Studied by Near-Infrared (NIR) Spectroscopy // Energy & Fuels. — 2009. — Vol. 23, iss. 3. — P. 1230–1236. — ISSN 0887-0624. — DOI:10.1021/ef8006068.
  • Balabin R. M., Lomakina E. I. Neural network approach to quantum-chemistry data: Accurate prediction of density functional theory energies // The Journal of Chemical Physics. — 2009. — Vol. 131, iss. 7. — P. 074104. — ISSN 0021-9606. — DOI:10.1063/1.3206326.
  • Balabin R. M., Safieva R. Z. Motor oil classification by base stock and viscosity based on near infrared (NIR) spectroscopy data // Fuel. — 2008. — Vol. 87, iss. 12. — P. 2745–2752. — ISSN 0016-2361. — DOI:10.1016/j.fuel.2008.02.014.
  • Balabin R. M., Safieva R. Z., Lomakina E. I. Near-infrared (NIR) spectroscopy for motor oil classification: From discriminant analysis to support vector machines // Microchemical Journal. — 2011. — Vol. 98, iss. 1. — P. 121–128. — ISSN 0026-265X. — DOI:10.1016/j.microc.2010.12.007.
  • Balabin R. M., Lomakina E. I. Support vector machine regression (LS-SVM)—an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data? // Physical Chemistry Chemical Physics. — 2011. — Vol. 13, iss. 24. — P. 11710. — ISSN 1463-9076. — DOI:10.1039/c1cp00051a.
  • Balabin R. M. Enthalpy Difference between Conformations of Normal Alkanes: Raman Spectroscopy Study of n-Pentane and n-Butane // The Journal of Physical Chemistry A. — 2009. — Vol. 113, iss. 6. — P. 1012–1019. — ISSN 1089-5639. — DOI:10.1021/jp809639s.
    • Balabin R. M. Reply to “Comment on ‘Enthalpy Difference between Conformations of Normal Alkanes: Raman Spectroscopy Study of n-Pentane and n-Butane’” // The Journal of Physical Chemistry A : Note. — 2010. — Vol. 114, iss. 24. — P. 6729–6730. — ISSN 1089-5639. — DOI:10.1021/jp103852d.
  • Balabin R. M., Syunyaev R. Z. Petroleum resins adsorption onto quartz sand: Near infrared (NIR) spectroscopy study // Journal of Colloid and Interface Science. — 2008. — Vol. 318, iss. 2. — P. 167–174. — ISSN 0021-9797. — DOI:10.1016/j.jcis.2007.10.045.
  • Balabin R. M., Syunyaev R. Z., Karpov S. A. Quantitative Measurement of Ethanol Distribution over Fractions of Ethanol−Gasoline Fuel // Energy & Fuels. — 2007. — Vol. 21, iss. 4. — P. 2460–2465. — ISSN 0887-0624. — DOI:10.1021/ef070081l.
  • Balabin R. M. Conformational Equilibrium in Glycine: Experimental Jet-Cooled Raman Spectrum // The Journal of Physical Chemistry Letters. — 2009. — Vol. 1, iss. 1. — P. 20–23. — ISSN 1948-7185. — DOI:10.1021/jz900068n.
  • Andrea Amantonico, Pawel L. Urban, Stephan R. Fagerer, Balabin R. M., Renato Zenobi. Single-Cell MALDI-MS as an Analytical Tool for Studying Intrapopulation Metabolic Heterogeneity of Unicellular Organisms // Analytical Chemistry. — 2010. — Vol. 82, iss. 17. — P. 7394–7400. — ISSN 1520-6882 0003-2700, 1520-6882. — DOI:10.1021/ac1015326.
  • Balabin R. M., Safieva R. Z. Capabilities of near Infrared Spectroscopy for the Determination of Petroleum Macromolecule Content in Aromatic Solutions // Journal of Near Infrared Spectroscopy. — 2007. — Vol. 15, iss. 6. — P. 343–349. — ISSN 0967-0335. — DOI:10.1255/jnirs.749.
  • Balabin R. M., Syunyaev R. Z., Karpov S. A. Molar enthalpy of vaporization of ethanol–gasoline mixtures and their colloid state // Fuel. — 2007. — Vol. 86, iss. 3. — P. 323–327. — ISSN 0016-2361. — DOI:10.1016/j.fuel.2006.08.008.
  • Balabin R. M. Tautomeric equilibrium and hydrogen shifts in tetrazole and triazoles: Focal-point analysis and ab initio limit // The Journal of Chemical Physics. — 2009. — Vol. 131, iss. 15. — P. 154307. — ISSN 0021-9606. — DOI:10.1063/1.3249968.
  • Balabin R. M. Conformational equilibrium in glycine: Focal-point analysis and ab initio limit // Chemical Physics Letters. — 2009. — Vol. 479, iss. 4-6. — P. 195–200. — ISSN 0009-2614. — DOI:10.1016/j.cplett.2009.08.038.
  • Balabin R. M. Polar (Acyclic) Isomer of Formic Acid Dimer: Gas-Phase Raman Spectroscopy Study and Thermodynamic Parameters // The Journal of Physical Chemistry A. — 2009. — Vol. 113, iss. 17. — P. 4910–4918. — ISSN 1089-5639. — DOI:10.1021/jp9002643.
  • Balabin R. M. The First Step in Glycine Solvation: The Glycine−Water Complex // The Journal of Physical Chemistry B. — 2010. — Vol. 114, iss. 46. — P. 15075–15078. — ISSN 1520-5207 1520-6106, 1520-5207. — DOI:10.1021/jp107539z.
  • Balabin R. M., Safieva R. Z. Near-Infrared (NIR) Spectroscopy for Biodiesel Analysis: Fractional Composition, Iodine Value, and Cold Filter Plugging Point from One Vibrational Spectrum // Energy & Fuels. — 2011. — Vol. 25, iss. 5. — P. 2373–2382. — ISSN 0887-0624. — DOI:10.1021/ef200356h.
  • Balabin R. M., Syunyaev R. Z., Thomas Schmid, Johannes Stadler, Lomakina E. I., Zenobi R. Asphaltene Adsorption onto an Iron Surface: Combined Near-Infrared (NIR), Raman, and AFM Study of the Kinetics, Thermodynamics, and Layer Structure // Energy & Fuels. — 2011. — Vol. 25, iss. 1. — P. 189–196. — ISSN 0887-0624. — DOI:10.1021/ef100779a.
  • Balabin R. M. The identification of the two missing conformers of gas-phase alanine: a jet-cooled Raman spectroscopy study // Physical Chemistry Chemical Physics. — 2010. — Vol. 12, iss. 23. — P. 5980. — ISSN 1463-9076. — DOI:10.1039/b924029b.
  • Balabin R. M. Intermolecular dispersion interactions of normal alkanes with rare gas atoms: van der Waals complexes of n-pentane with helium, neon, and argon // Chemical Physics. — 2008. — Vol. 352, iss. 1-3. — P. 267–275. — ISSN 0301-0104. — DOI:10.1016/j.chemphys.2008.06.015.
  • Barylyuk K. V., Chingin K., Balabin R. M., Zenobi R. Fragmentation of benzylpyridinium "thermometer" ions and its effect on the accuracy of internal energy calibration // Journal of the American Society for Mass Spectrometry. — 2010. — Vol. 21, iss. 1. — P. 172–177. — ISSN 1879-1123 1044-0305, 1879-1123. — DOI:10.1016/j.jasms.2009.09.023.
  • Law W. S., Chen H. W., Balabin R., Berchtold Ch., Meier L., Zenobi R. Rapid fingerprinting and classification of extra virgin olive oil by microjet sampling and extractive electrospray ionization mass spectrometry // The Analyst. — 2010. — Vol. 135, iss. 4. — P. 773. — ISSN 1364-5528 0003-2654, 1364-5528. — DOI:10.1039/b924156f.
  • Balabin R. M. Communications: Is quantum chemical treatment of biopolymers accurate? Intramolecular basis set superposition error (BSSE) // The Journal of Chemical Physics. — 2010. — Vol. 132, iss. 23. — P. 231101. — ISSN 0021-9606. — DOI:10.1063/1.3442466.
  • Barylyuk, K., Balabin, R.M., Grünstein, D., Kikkeri, R., Frankevich, V., Seeberger, P.H., Zenobi, R. What Happens to Hydrophobic Interactions during Transfer from the Solution to the Gas Phase? The Case of Electrospray-Based Soft Ionization Methods // Journal of the American Society for Mass Spectrometry. — 2011. — Vol. 22, iss. 7. — P. 1167–1177. — ISSN 1044-0305. — DOI:10.1007/s13361-011-0118-8.
  • Balabin R. M. Intramolecular basis set superposition error as a measure of basis set incompleteness: Can one reach the basis set limit without extrapolation? // The Journal of Chemical Physics : Communications. — 2010. — Vol. 132, iss. 21. — P. 211103. — ISSN 0021-9606. — DOI:10.1063/1.3430647.
  • Zhu L., Hu Z., Gamez G., Law W.S., Chen H., Yang S., Chingin K., Balabin R.M., Wang R., Zhang T., Zenobi R. Simultaneous sampling of volatile and non-volatile analytes in beer for fast fingerprinting by extractive electrospray ionization mass spectrometry // Analytical and Bioanalytical Chemistry. — 2010. — Vol. 398, iss. 1. — P. 405–413. — ISSN 1618-2642. — DOI:10.1007/s00216-010-3945-8.
  • Syunyaev R. Z., Balabin R. M. Frequency Dependence of Oil Conductivity at High Pressure // Journal of Dispersion Science and Technology. — 2007. — Vol. 28, iss. 3. — P. 419–424. — ISSN 1532-2351 0193-2691, 1532-2351. — DOI:10.1080/01932690601107773.
  • Chingin K., Balabin R. M., Frankevich V., Barylyuk K., Nieckarz R., Sagulenko P., Zenobi R. Absorption of the green fluorescent protein chromophore anion in the gas phase studied by a combination of FTICR mass spectrometry with laser-induced photodissociation spectroscopy // International Journal of Mass Spectrometry. — 2011. — Vol. 306, iss. 2-3. — P. 241–245. — ISSN 1387-3806. — DOI:10.1016/j.ijms.2011.01.014.
  • Chingin K., Frankevich V., Balabin R. M., Barylyuk K., Chen H., Wang R., Zenobi R. Direct Access to Isolated Biomolecules under Ambient Conditions // Angewandte Chemie International Edition. — 2010-01-26. — Vol. 49, iss. 13. — P. 2358–2361. — ISSN 1433-7851. — DOI:10.1002/anie.200906213.
  • Syunyaev R. Z., Balabin R. M. Polarization of Fluorescence of Asphaltene Containing Systems // Journal of Dispersion Science and Technology. — 2008. — Vol. 29, iss. 10. — P. 1505–1514. — ISSN 1532-2351 0193-2691, 1532-2351. — DOI:10.1080/01932690802316868.
  • Balabin R. M. Boryl Substitution of Acetaldehyde Makes It an Enol: Inconsistency between Gn/CBS and Ab Initio/DFT Data // The Journal of Physical Chemistry A. — 2010. — Vol. 114, iss. 10. — P. 3698–3702. — ISSN 1089-5639. — DOI:10.1021/jp911802v.
  • Balabin R. M. Enthalpy difference between conformations of normal alkanes: effects of basis set and chain length on intramolecular basis set superposition error // Molecular Physics. — 2011. — Vol. 109, iss. 6. — P. 943–953. — ISSN 1362-3028 0026-8976, 1362-3028. — DOI:10.1080/00268976.2011.558858.
  • Balabin R. M. Experimental thermodynamics of free glycine conformations: the first Raman experiment after twenty years of calculations // Phys. Chem. Chem. Phys. — 2012. — Vol. 14, iss. 1. — P. 99–103. — ISSN 1463-9076. — DOI:10.1039/c1cp20805e.
  • Balabin R. M., Smirnov S. V. Interpolation and extrapolation problems of multivariate regression in analytical chemistry: benchmarking the robustness on near-infrared (NIR) spectroscopy data // The Analyst. — 2012. — Vol. 137, iss. 7. — P. 1604. — ISSN 0003-2654. — DOI:10.1039/c2an15972d.
  • Balabin R. M. Conformational equilibrium in alanine: Focal-point analysis and ab initio limit // Computational and Theoretical Chemistry. — 2011. — Vol. 965, iss. 1. — P. 15–21. — ISSN 2210-271X. — DOI:10.1016/j.comptc.2011.01.008.
  • Chingin K., Balabin R. M., Frankevich V., Chen H., Barylyuk K., Nieckarz R., Fedorov A., Zenobi R. Optical properties of protonated Rhodamine 19 isomers in solution and in the gas phase // Physical Chemistry Chemical Physics. — 2010. — Vol. 12, iss. 42. — P. 14121. — ISSN 1463-9076. — DOI:10.1039/c0cp00482k.
  • Chingin K., Balabin R. M., Barylyuk K., Chen H., Frankevich V., Zenobi R. Rhodamines in the gas phase: cations, neutrals, anions, and adducts with 1metal cations // Physical Chemistry Chemical Physics. — 2010. — Vol. 12, iss. 37. — P. 11710. — ISSN 1463-9076. — DOI:10.1039/c000807a.

See also

  • Renato Zenobi
  • Paweł Urban
  • Konstantin Chingin

References

  1. Vempatapu, Kanauji, 2017, pp. 8–9, 11.
  2. Marques et al., 2014, pp. 100–103, 106–107
  3. Skvaril, Kyprianidis, Dahlquist, 2017, Characterization of biodiesel, pp. 683, 685, 709–716, 720–727
  4. Shi H., Yu P., 2018, pp. 407, 417
  5. Martins, Gonçalves, Peres, 2011, pp. 57–70
  6. Khanmohammadi et al., 2012, pp. 140, 149
  7. Shao X. et al., 2010, pp. 1663, 1665
  8. Gutiérrez, Muñoz, Del Valle, 2011, pp. 258–270
  9. Wakiru et al., 2019, pp. 117, 130
  10. Motai, 2015, pp. 9–10, 33
  11. Vershinin, 2011, pp. 1015, 1019.
  12. Curteanu, 2011, pp. 103–118
  13. Giwa, 2016, pp. 87, 103
  14. Luna, Lima, Alberton, 2016, pp. 37, 44
  15. 15.0 15.1 Jha S. Kr. et al., 2017, pp. 310, 316
  16. Chen Q. et al., 2017, pp. 108–112
  17. Butler et al., 2016, pp. 675–676, 686
  18. Harrington, 2017, pp. 2, 14
  19. Tange et al., «Benchmarking», 2017, pp. 382, 389.
  20. Baird, Oja, 2016, pp. 42–43, 47.
  21. Pasquini, 2018, pp. 18–19, 33
  22. Cheng Ch. et al., 2015, pp. 1060, 1067.
  23. Constantinescu et al., 2015, pp. 385, 391.
  24. Gromski et al., 2015, pp. 12, 21.
  25. Lavine, Workman, 2013, pp. 711, 714.
  26. Hoehse et al., 2012, pp. 1447–1448, 1450.
  27. Palou et al., 2017, pp. 120, 126.
  28. Dingari et al., 2012, pp. 2688, 2692, 2694.
  29. Khayyam, Golkarnarenji, Jazar, 2018, p. 375
  30. Kroll et al., 2017, pp. 2607–2608, 2613
  31. Byrne et al., 2016, pp. 1867–1868, 1878.
  32. Sousa, Lopes, 2013, pp. 392, 413.
  33. Hanif et al., 2018, pp. 2073, 2081
  34. Rammal et al., 2017, pp. 154, 160
  35. Cetó, Voelcker, Prieto-Simón, 2016, pp. 611, 626
  36. Liu D., Sun D.-W., Zeng X.-A., 2014, pp. 308, 320.
  37. Carreiro Soares et al., 2013, pp. 87, 98
  38. Gharagheizi et al., 2011, pp. 4994, 5021.
  39. Rocha et al., 2012, pp. 12–31
  40. Yang Z. et al., 2016, pp. 573, 633
  41. Craig, Franca, Irudayaraj, 2015, pp. 180, 186
  42. 42.0 42.1 Fu X., Ying Y., 2014, pp. 1918–1922
  43. 43.0 43.1 Lu X., 2014, pp. 177–178, 187
  44. Jha S. N. et al., 2015, pp. 1672–1682
  45. Ritota, Manzi, 2017, pp. 140–141
  46. Qu J.-H. et al., 2015, pp. 1940, 1949–1951
  47. Panikuttira, O’Donnell, 2018, p. 840
  48. Sørensen, Khakimov, Engelsen, 2016, pp. 47, 49
  49. Hajinazar, Shao, Kolmogorov, 2017, pp. 1, 12
  50. Raff et al., 2012, pp. 234–236, 261
  51. Sarkar, Bhattacharyya, 2017, 8.8. Neural Networks in Optimization
  52. Iwasaki, Kusne, Takeuchi, 2017, pp. 1, 9
  53. Li Y., Yu J., 2014, pp. 7298, 7314
  54. 54.0 54.1 Montavon et al., 2013, pp. 3, 13
  55. Hansen et al., 2013, pp. 3405, 3418
  56. Kusne et al., 2014, pp. 1, 6
  57. 57.0 57.1 Pyzer-Knapp et al., 2015, pp. 211, 216
  58. Granda, Jurcza, 2014, pp. 12369, 12372
  59. Mosquera et al., 2017, pp. 160, 162
  60. Behler, 2017, pp. 12830, 12839
  61. Lilienfeld, 2018, pp. 4165, 4168
  62. Kim J.-Y. et al., 2014, pp. 16352, 16359–16360
  63. 63.0 63.1 Gloaguen, Mons, 2015, pp. 227–229, 246, 260
  64. Ghosh, Choi T., Choi C., 2016, pp. 3, 11
  65. Bazsó, Magyarfalvi, Tarczay, 2012, pp. 33–34, 42
  66. Puzzarini, Biczysko, 2014, pp. 44, 63
  67. Bachrach, 2014, pp. 66—68, 94
  68. Liu F., Yu J., Huang Y.-R., 2018, pp. 1, 5, 8
  69. Barone et al., PCCP, 2013, pp. 10095, 10098–10100, 10109
  70. Cormanich, Rittner, Bühl, 2015, pp. 13052, 13059
  71. Sacchi, Jenkins, 2014, pp. 6103, 6107
  72. Bazsó, Magyarfalvi, Tarczay, 2012, pp. 34, 42
  73. Barone, Biczysko, Carnimeo, 2014, pp. 288, 318
  74. Barone et al., PCCP, «Glycine conformers», 2013, pp. 1358–1362
  75. Karton et al., 2014, pp. 2, 7–8, 11, 13
  76. Farrokhpour, Fathi, De Brito, 2012, pp. 7004–7015
  77. Tia M., 2014, pp. 2770-2771, 2777
  78. Nunes et al., 2013, pp. 2–6, 12
  79. Gadre, Yeole, Sahu, 2014, pp. 12156–12157, 12172
  80. Kim J.-Y. et al., 2014, pp. 16353, 16360
  81. Bachrach, 2014, pp. 490, 503
  82. Cahill et al., 2015, pp. 8039, 8045
  83. Czar, Jockusch, 2015, pp. 126, 130, 134
  84. Nespovitaya, 2014, pp. i, 71, 89, 164
  85. Vaclavik et al., 2014, pp. 55, 71
  86. Blanco, Andrés-Iglesias, Montero, 2014, pp. 1381–1385, 1388.
  87. Šedo, Márová, Zdráhal, 2012, pp. 474, 478
  88. Doezema et al., 2012, pp. 2931, 2938
  89. Li X. et al., 2011, pp. 1010–1025
  90. Goldstein et al., 2014, pp. 10, 15
  91. Hopper, Robinson, 2014, pp. 14008, 14014
  92. Kaltashov, Eyles, 2012, pp. 90, 119
  93. Dyck, Konijnenberg, Sobott, 2017, pp. 208, 229
  94. Przybylski, Bonnet, Cézard, 2015, pp. 19289, 19304
  95. Konermann, Vahidi, Sowole, 2014, pp. 226, 232
  96. Lemaur et al., 2013, pp. 959–960, 968
  97. Maple et al., 2012, pp. 838, 849
  98. Wyttenbach et al., 2014, pp. 185, 194
  99. Fernandes et al., 2014, pp. 853, 860
  100. Knolhoff et al., 2013
  101. Vertes, Shrestha, Nemes, 2013
  102. Onjiko, Portero, Nemes, 2018
  103. Misra, Assmann, Chen S., 2014, pp. 638, 641, 646
  104. Sims, Manteiga, Lee K., 2013, pp. 936, 939
  105. Tanaka, Liang, Maeda, 2017, pp. 580, 584
  106. Bergman, Lanekoff, 2017, pp. 3639, 3646
  107. Moussaieff et al., 2013, pp. E1232, E1241
  108. He X. et al., 2014, pp. 95, 97
  109. Klepárník, Foret, 2013, pp. 16, 20
  110. Fujii et al., 2015, pp. 1445, 1456
  111. Gao D. et al., 2013, pp. 3313, 3320
  112. Yang Y. et al., 2017, pp. 14, 25
  113. Cole et al., 2017, pp. 8732–8733
  114. Mao S. et al., 2018, pp. 44, 55
  115. Cook, Nielsen, 2017, pp. 6, 14
  116. Cole, Clench, 2015, pp. 338, 341
  117. Galler et al., 2014, pp. 1254, 1269
  118. Passarelli, Ewing, 2013, pp. 854, 858
  119. SCOPUS, Oct. 2018

Literature

Books
  • Panikuttira B., O’Donnell C. P. Process Analytical Technology for the Fruit Juice Industry // Fruit Juices: Extraction, Composition, Quality and Analysis / eds. Gaurav Rajauria, Brijesh K. Tiwari. — London: Elsevier, Academic Press, 2018. — P. 835–847. — xxx, 878 p. — ISBN:9780128024911. — ISBN:9780128022306. — ISBN:0128024917. — ISBN:0128022302. — DOI:10.1016/b978-0-12-802230-6.00040-0.
  • Craig A. P., Franca A. S., Irudayaraj J. Vibrational spectroscopy for food quality and safety screening // High Throughput Screening for Food Safety Assessment: Biosensor Technologies, Hyperspectral Imaging and Practical Applications / eds. A. K. Bhunia, M. S. Kim, C. R. Taitt. — Elsevier, 2015. — P. 165–194. — ISBN:9780857098016. — ISBN:978-085709807-8. — DOI:10.1016/b978-0-85709-801-6.00007-1.
  • Lu X. Recent developments in infrared spectroscopy for the detection of food chemical hazards // Food Chemical Hazard Detection: Development and Application of New Technologies / ed. S. Wang. — Chichester: John Wiley & Sons, 2014. — P. 173–189. — ISBN:9781118488553. — ISBN:9781118488591. — DOI:10.1002/9781118488553.ch5.
  • Raff L., Komanduri R., Hagan M., Bukkapatnam S. Other Applications of NNs to Quantum Mechanical Problem // Neural networks in chemical reaction dynamics. — NY: Oxford University Press, 2012. — P. 215—243. — xiv, 283 p. — ISBN:9780199909889. — ISBN:0199909881.
  • Sarkar K., Bhattacharyya S. P. Soft Computing in Chemical and Physical Sciences : a Shift in Computing Paradigm. — 1st ed. — Boca Raton, FL: CRC Press, 2017. — xvi, 418 p. — ISBN:9781315152899. — ISBN:9781498755955. — ISBN:1315152894. — ISBN:149875595X.
  • Bachrach S. M. Computational Organic Chemistry. — 2nd ed. — John Wiley & Sons, 2014. — 1070 p. — ISBN:9781118671221. — ISBN:978-111867119-1. — ISBN:978-111829192-4. — ISBN:1118671228. — DOI:10.1002/9781118671191.
  • Barone V., Biczysko M., Carnimeo I. Computational Tools for Structure, Spectroscopy and Thermochemistry: Computational and Experimental Tools // Understanding Organometallic Reaction Mechanisms and Catalysis / ed. V. P. Ananikov. — Weinheim: Wiley-VCH, 2014. — P. 249–320. — ISBN:9783527678211. — ISBN:9783527335626. — DOI:10.1002/9783527678211.ch10.
  • Puzzarini Cr., Biczysko M. Computational Spectroscopy Tools for Molecular Structure Analysis // Structure Elucidation in Organic Chemistry: The Search for the Right Tools / eds. M. M. Cid, J. Bravo. — Weinheim: Wiley-VCH, 2014. — P. 27–64. — ISBN:9783527664610. — ISBN:9783527333363. — DOI:10.1002/9783527664610.ch2.
  • Gloaguen E., Mons M. Isolated Neutral Peptides // Gas-Phase IR Spectroscopy and Structure of Biological Molecules / eds. Anouk Rijs, Jos Oomens. — Cham: Springer, 2015. — P. 225–270. — ix, 406 p. — (Topics in Current Chemistry, Vol. 364; ISSN 0340-1022). — ISBN:9783319192031. — ISBN:9783319192048. — ISBN:978-3-319-37865-7. — DOI:10.1007/128 2014 580.
  • Martins F. G., Gonçalves D. J. D., Peres J. Artificial neural networks in environmental sciences and chemical engineering // Focus on artificial neural networks / ed. J. A. Flores. — NY: Nova Science Publishers, 2011. — P. 55—74. — xiv, 410 p. — ISBN:9781619421004. — ISBN:1619421003. — ISBN:9781613242858. — ISBN:1613242859.
  • Khanmohammadi M., Fard H. G., Garmarudi A. B., De La Guardia M. Determination of gasoline quality parameters by FTIR spectroscopy and chemometrics // Infrared Spectroscopy: Theory, Developments and Applications / ed. Daniel Cozzolino. — Nova Science Publishers, 2014. — P. 287—306. — 557 p. — (Chemistry research and applications). — ISBN:9781629485218. — ISBN:1629485217.
    • Khanmohammadi M., Garmarudi A. B., De La Guardia M. Characterization of petroleum-based products by infrared spectroscopy and chemometrics // TrAC Trends in Analytical Chemistry. — 2012. — May (vol. 35). — P. 135–149. — ISSN 0165-9936. — DOI:10.1016/j.trac.2011.12.006.
  • Gutiérrez J. M., Muñoz R., Del Valle M. Wavelet neural networks: A recent strategy for processing complex signals applications to chemistry // Focus on Artificial Neural Networks / ed. J. A. Flores. — NY: Nova Science Publishers, 2011. — P. 257—275. — xiv, 410 p. — ISBN:9781619421004. — ISBN:1619421003. — ISBN:9781613242858. — ISBN:1613242859.
  • Curteanu S. Different types of applications performed with different types of neural networks // Artificial neural networks / ed. S. J. Kwon. — NY: Nova Science Publishers, 2011. — P. 101—136. — xiii, 426 p. — ISBN:9781617616976. — ISBN:1617616974.
  • Giwa S. O. Applications of Artificial Neural Networks to Predict Biodiesel Fuel Properties from Fatty Acid Constituents // Artificial Neural Networks: New Research / ed. Gayle Cain. — Nova Science Publishers, 2016. — 221 p. — (Computer science, technology and applications). — ISBN:9781634859646. — ISBN:978-163485979-0. — ISBN:1634859642.
  • Chen Q., Zhai Z., You X., Zhang T. Inverse design methods for the built environment. — Abingdon: Taylor and Francis, 2017. — 248 p. — ISBN:9781315468006. — ISBN:9781315467993. — ISBN:131546800X. — ISBN:1315467992.
  • Motai Y. Data-Variant Kernel Analysis. — John Wiley & Sons, 2015. — 248 p. — (Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control). — ISBN:9781119019329. — ISBN:978-111901935-0. — ISBN:111901932X. — DOI:10.1002/9781119019350.
  • Khayyam H., Golkarnarenji G., Jazar R. N. Limited Data Modelling Approaches for Engineering Applications // Nonlinear Approaches in Engineering Applications / eds. Liming Dai, Reza N. Jazar. — Cham: Springer International Publishing, 2018. — P. 345—379. — xxvi, 456 p. — ISBN:9783319694795. — ISBN:9783319694801. — DOI:10.1007/978-3-319-69480-1 12.
  • Constantinescu S., Sturla S. J., Marra G., Wollscheid B., Beerenwinkel N. Computational Data Integration in Toxicogenomics // Computational Systems Toxicology / eds. Julia Hoeng, Manuel C. Peitsch. — NY: Springer, Humana Press, 2015. — P. 371–392. — x, 430 p. — (Methods in Pharmacology and Toxicology; ISSN 1557-2153). — ISBN 29781493927784. — DOI:10.1007/978-1-4939-2778-4 15.
  • Sousa C. C., Lopes J. A. Infrared spectroscopy detection coupled to chemometrics to characterize foodborne pathogens at a subspecies level // Mathematical and Statistical Methods in Food Science and Technology / eds. D. Granato, G. Ares. — Chichester: John Wiley & Sons, 2013. — P. 385—418. — ISBN:9781118434635. — ISBN:9781118433683. — DOI:10.1002/9781118434635.ch20.
  • Rocha W. F. C., Nogueira R., Vaz B. G., Fidelis C. H. V., Romão W. Review on quality control in science // Quality control: Developments, methods and applications / ed. J. A.Orosa. — Nova Science Publishers, 2012. — P. 1—46. — 197 p. — ISBN:978-162257139-0.
  • Yang Z., Wang Z., Hollebone B.P., Yang C., Brown C. E. Forensic Fingerprinting of Biodiesel and its Blends with Petroleum Oil // Standard Handbook Oil Spill Environmental Forensics: Fingerprinting and Source Identification / eds. S. A. Stout, Z. Wang. — 2nd ed. — Academic Press, Elsevier, 2016. — P. 565—640. — 1142 p. — ISBN:978-012809659-8. — ISBN:978-0-12-803832-1. — ISBN:9780128039021. — ISBN:0128038322. — ISBN:0128039027. — DOI:10.1016/B978-0-12-809659-8.00012-7.
  • Nespovitaya, Nadezda. New insights to functional CRF, somatostatin 14, and β-endorphin aggregation / recom. Roland Riek, Paola Picotti. — Zurich: ETH Library, 2014. — xi, 203 p. — DOI:10.3929/ethz-a-010259277.
  • Lukas Vaclavik, Tomas Cajka, Wanlong Zhou, Perry G. Wang. Survey of Mass Spectrometry-Based High-Throughput Methods in Food Analysis // High-Throughput Analysis for Food Safety / eds. P. G. Wang, M. F. Vitha, J. F. Kay. — Hoboken, NJ: John Wiley & Sons, 2014. — P. 15–72. — ISBN:9781118907924. — ISBN:9781118396308. — DOI:10.1002/9781118907924.ch02.
  • Igor A. Kaltashov, Eyles S. J. Mass spectrometry in structural biology and biophysics : architecture, dynamics, and interaction of biomolecules. — 2nd ed. — Hoboken, NJ: Wiley, 2012. — 289 p. — ISBN:9781118232125. — ISBN:1118232127. — ISBN:9781118232088. — ISBN:1118232089. — ISBN:9781280590283.
  • Jeroen F. van Dyck, Albert Konijnenberg, Frank Sobott. Native Mass Spectrometry for the Characterization of Structure and Interactions of Membrane Proteins // Membrane Protein Structure and Function Characterization: Methods and Protocols / ed. Jean-Jacques Lacapere. — NY: Springer, 2017. — P. 205–232. — (Methods in Molecular Biology, Vol. 1635, ISSN 1064-3745). — ISBN:9781493971497. — ISBN:9781493971510. — DOI:10.1007/978-1-4939-7151-0 11.
  • Knolhoff A. M., Nemes P., Rubakhin S. S., Sweedler J. V. Mass spectrometry–based methodologies for single-cell metabolite detection and identification // Methodologies for Metabolomics : Experimental Strategies and Techniques / eds. Norbert W. Lutz, Jonathan V. Sweedler, Ron A. Wevers. — Cambridge: Cambridge University Press, 2013. — P. 119—139. — 642 p. — ISBN:9781139615334. — ISBN:9781283870375. — ISBN:9780511996634. — ISBN:9780521765909. — ISBN:9781139624633.
    • Vertes A., Shrestha B., Nemes P. Direct metabolomics from tissues and cells: Laser ablation electrospray ionization for small molecule and lipid characterization // Methodologies for Metabolomics : Experimental Strategies and Techniques / eds. Norbert W. Lutz, Jonathan V. Sweedler, Ron A. Wevers. — Cambridge: Cambridge University Press, 2013. — P. 140—158. — 642 p. — ISBN:9781139615334. — ISBN:9781283870375. — ISBN:9780511996634. — ISBN:9780521765909. — ISBN:9781139624633.
  • Rosemary M. Onjiko, Erika P. Portero, P. Nemes. Single-cell Metabolomics with Capillary Electrophoresis–Mass Spectrometry // Capillary Electrophoresis–Mass Spectrometry for Metabolomics / ed. Rawi Ramautar. — Cambridge: Royal Society of Chemistry, 2018. — P. 209–224. — ISBN:9781788011044. — ISBN:978-1-78801-273-7. — ISBN:978-1-78801-484-7. — DOI:10.1039/9781788012737-00209.
  • Tanaka T., Liang Y., Maeda Y. Lipidomic analysis of marine microalgae // Marine OMICS : principles and applications / ed. S.-K. Kim. — Boca Raton: CRC Press, 2017. — P. 575—588. — xx, 724 p. — ISBN:9781315372303. — ISBN:9781482258219. — ISBN:1315372304. — ISBN:1482258218. — DOI:10.1201/9781315372303.
  • Luna A. S., Lima E. R. A., Alberton K. P. F. Applications of Artificial Neural Networks in Chemistry and Chemical Engineering // Artificial Neural Networks: New Research / ed. Gayle Cain. — Nova Science Publishers, 2016. — 221 p. — (Computer science, technology and applications). — ISBN:9781634859646. — ISBN:978-163485979-0. — ISBN:1634859642.
Reviews
  • Ritota M., Manzi P. Melamine detection in milk and dairy products: Traditional analytical methods and recent developments // Food Analytical Methods. — 2017. — July (vol. 11, iss. 1). — P. 128–147. — ISSN 1936-9751. — DOI:10.1007/s12161-017-0984-1.
  • Sørensen K. M, Khakimov B., Engelsen S. B. The use of rapid spectroscopic screening methods to detect adulteration of food raw materials and ingredients // Current Opinion in Food Science. — 2016. — August (vol. 10). — P. 45–51. — ISSN 2214-7993. — DOI:10.1016/j.cofs.2016.08.001.
  • Fu X., Ying Y. Food Safety Evaluation Based on Near Infrared Spectroscopy and Imaging: A Review // Critical Reviews in Food Science and Nutrition. — 2014. — June (vol. 56, iss. 11). — P. 1913–1924. — ISSN 1040-8398. — DOI:10.1080/10408398.2013.807418.
  • Jha S. N., Jaiswal P., Grewal M. K., Gupta M., Bhardwaj R. Detection of Adulterants and Contaminants in Liquid Foods—A Review // Critical Reviews in Food Science and Nutrition. — 2015. — May (vol. 56, iss. 10). — P. 1662–1684. — ISSN 1040-8398. — DOI:10.1080/10408398.2013.798257.
  • Qu J.-H., Liu D., Cheng J.-H., Sun D.-W., Ma J. Applications of Near-infrared Spectroscopy in Food Safety Evaluation and Control: A Review of Recent Research Advances // Critical Reviews in Food Science and Nutrition. — 2015. — May (vol. 55, iss. 13). — P. 1939–1954. — ISSN 1040-8398. — DOI:10.1080/10408398.2013.871693.
  • Li Y., Yu J. New Stories of Zeolite Structures: Their Descriptions, Determinations, Predictions, and Evaluations // Chemical Reviews. — 2014. — May (vol. 114, iss. 14). — P. 7268–7316. — ISSN 0009-2665. — DOI:10.1021/cr500010r.
  • Pyzer-Knapp E. O., Suh Ch., Gómez-Bombarelli R., Aguilera-Iparraguirre J., Aspuru-Guzik A. What Is High-Throughput Virtual Screening? A Perspective from Organic Materials Discovery // Annual Review of Materials Research. — 2015. — July (vol. 45, iss. 1). — P. 195–216. — ISSN 1531-7331. — DOI:10.1146/annurev-matsci-070214-020823.
  • Mosquera M. A., Fu B., Kohlstedt K. L., Schatz G. C., Ratner M. A. Wave Functions, Density Functionals, and Artificial Intelligence for Materials and Energy Research: Future Prospects and Challenges // ACS Energy Letters. — 2017. — December (vol. 3, iss. 1). — P. 155–162. — ISSN 2380-8195. — DOI:10.1021/acsenergylett.7b01058.
  • Behler J. First Principles Neural Network Potentials for Reactive Simulations of Large Molecular and Condensed Systems // Angewandte Chemie International Edition. — 2017. — August (vol. 56, iss. 42). — P. 12828–12840. — ISSN 1433-7851. — DOI:10.1002/anie.201703114.
  • Lilienfeld A. O. Quantum Machine Learning in Chemical Compound Space // Angewandte Chemie International Edition. — 2018. — March (vol. 57, iss. 16). — P. 4164–4169. — ISSN 1433-7851. — DOI:10.1002/anie.201709686.
  • Gadre S. R., Yeole S. D., Sahu N. Quantum Chemical Investigations on Molecular Clusters // Chemical Reviews. — 2014. — December (vol. 114, iss. 24). — P. 12132–12173. — ISSN 0009-2665. — DOI:10.1021/cr4006632.
  • Kim J.-Y., Ahn D.-S., Park S.-W., Lee S. Gas phase hydration of amino acids and dipeptides: effects on the relative stability of zwitterion vs. canonical conformers // RSC Advances. — 2014. — Vol. 4, iss. 31. — P. 16352–16361. — ISSN 2046-2069. — DOI:10.1039/c4ra01217h.
  • Marques D. B., Barradas Filho A. O., Romariz A. R. S., Viegas I. M. A., Luz D. A. Recent Developments on Statistical and Neural Network Tools Focusing on Biodiesel Quality // International Journal of Computer Science and Application. — 2014. — Vol. 3, iss. 3. — P. 97-110. — ISSN 2324-7134. — DOI:10.14355/ijcsa.2014.0303.01.
  • Skvaril J., Kyprianidis K. G., Dahlquist E. Applications of near-infrared spectroscopy (NIRS) in biomass energy conversion processes: A review // Applied Spectroscopy Reviews. — 2017. — September (vol. 52, iss. 8). — P. 675–728. — ISSN 0570-4928. — DOI:10.1080/05704928.2017.1289471.
  • Shi H., Yu P. Exploring the potential of applying infrared vibrational (micro)spectroscopy in ergot alkaloids determination: Techniques, current status, and challenges // Applied Spectroscopy Reviews. — 2018. — Vol. 53, iss. 5. — P. 395—419. — ISSN 0570-4928. — DOI:10.1080/05704928.2017.1363771.
  • Shao X., Bian X., Liu J., Zhang M., Cai W. Multivariate calibration methods in near infrared spectroscopic analysis // Analytical Methods. — 2010. — November (vol. 2, iss. 11). — P. 1662—1666. — ISSN 1759-9679. — DOI:10.1039/c0ay00421a.
  • Jha S. Kr., Bilalovic J., Jha A., Patel N., Zhang H. Renewable energy: Present research and future scope of Artificial Intelligence // Renewable and Sustainable Energy Reviews. — 2017. — September (vol. 77). — P. 297–317. — ISSN 1364-0321. — DOI:10.1016/j.rser.2017.04.018.
  • Wakiru J. M., Pintelon L., Muchiri P. N., Chemweno P. K. A review on lubricant condition monitoring information analysis for maintenance decision support // Mechanical Systems and Signal Processing. — 2019. — March (vol. 118). — P. 108–132. — ISSN 0888-3270. — DOI:10.1016/j.ymssp.2018.08.039.
  • Pasquini C. Near infrared spectroscopy: A mature analytical technique with new perspectives — A review // Analytica Chimica Acta. — 2018. — October (vol. 1026). — P. 8—36. — ISSN 0003-2670. — DOI:10.1016/j.aca.2018.04.004.
  • Kroll P., Hofer A., Ulonska S., Kager J., Herwig Ch. Model-Based Methods in the Biopharmaceutical Process Lifecycle // Pharmaceutical Research. — 2017. — December (vol. 34, iss. 12). — P. 2596–2613. — ISSN 0724-8741. — DOI:10.1007/s11095-017-2308-y.
  • Cheng Ch., Sa-Ngasoongsong A., Beyca O., Le Tr., Yang H. Time series forecasting for nonlinear and non-stationary processes: a review and comparative study // Institute of Industrial Engineers (IIE) Transactions. — 2015. — October (vol. 47, iss. 10). — P. 1053–1071. — ISSN 0740-817X. — DOI:10.1080/0740817x.2014.999180.
  • Piotr S. Gromski, Howbeer Muhamadali, David I. Ellis, Yun Xu, Elon Correa, Turner M. L., Goodacre R. A tutorial review: Metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding // Analytica Chimica Acta. — 2015. — June (vol. 879). — P. 10–23. — ISSN 0003-2670. — DOI:10.1016/j.aca.2015.02.012.
  • Lavine B. K., Workman J. Chemometrics // Analytical Chemistry. — 2013. — January (vol. 85, iss. 2). — P. 705–714. — ISSN 0003-2700. — DOI:10.1021/ac303193j.
  • Peter de B. Harrington. Automated support vector regression // Journal of Chemometrics. — 2017. — April (vol. 31, iss. 4). — P. e2867 [1-14]. — ISSN 0886-9383. — DOI:10.1002/cem.2867.
  • Zachariah Steven Baird, Vahur Oja. Predicting fuel properties using chemometrics: a review and an extension to temperature dependent physical properties by using infrared spectroscopy to predict density // Chemometrics and Intelligent Laboratory Systems. — 2016. — November (vol. 158). — P. 41–47. — ISSN 0169-7439. — DOI:10.1016/j.chemolab.2016.08.004.
  • Bhanu Prasad Vempatapu, Pankaj K. Kanaujia. Monitoring petroleum fuel adulteration: A review of analytical methods // TrAC Trends in Analytical Chemistry. — 2017. — July (vol. 92). — P. 1–11. — ISSN 0165-9936. — DOI:10.1016/j.trac.2017.04.011.
  • Vershinin V. I. Chemometrics in the works of Russian analysts // Journal of Analytical Chemistry. — 2011. — November (vol. 66, iss. 11). — P. 1010–1019. — ISSN 1061-9348. — DOI:10.1134/s1061934811110153.
  • Muhammad Asif Hanif, Shafaq Nisar, Muhammad Nadeem Akhtar, Numra Nisar, Nosheen Rashid. Optimized production and advanced assessment of biodiesel: A review // International Journal of Energy Research. — 2018. — May (vol. 42, iss. 6). — P. 2070–2083. — ISSN 0363-907X. — DOI:10.1002/er.3990.
  • Xavier Cetó, Nicolas H. Voelcker, Beatriz Prieto-Simón. Bioelectronic tongues: New trends and applications in water and food analysis // Biosensors and Bioelectronics. — 2016. — May (vol. 79). — P. 608–626. — ISSN 0956-5663. — DOI:10.1016/j.bios.2015.12.075.
  • Hugh J. Byrne, Peter Knief, Mark E. Keating, Franck Bonnier. Spectral pre and post processing for infrared and Raman spectroscopy of biological tissues and cells // Chemical Society Reviews. — 2016. — April (vol. 45, iss. 7). — P. 1865–1878. — ISSN 0306-0012. — DOI:10.1039/c5cs00440c.
  • Liu D., Sun D.-W., Zeng X.-A. Recent Advances in Wavelength Selection Techniques for Hyperspectral Image Processing in the Food Industry // Food and Bioprocess Technology. — 2014. — Vol. 7, iss. 2. — P. 307–323. — ISSN 1935-5130. — DOI:10.1007/s11947-013-1193-6.
  • Sófacles Figueredo Carreiro Soares, Adriano A. Gomes, Mario Cesar Ugulino Araujo, Arlindo Rodrigues Galvão Filho, Roberto Kawakami Harrop Galvão. The successive projections algorithm // TrAC Trends in Analytical Chemistry. — 2013. — January (vol. 42). — P. 84–98. — ISSN 0165-9936. — DOI:10.1016/j.trac.2012.09.006.
  • Czar M. F., Jockusch R. A. Sensitive probes of protein structure and dynamics in well-controlled environments: combining mass spectrometry with fluorescence spectroscopy // Current Opinion in Structural Biology / eds. Ben Schuler, Janet L. Smith. — 2015. — October (vol. 34). — P. 123–134. — ISSN 0959-440X. — DOI:10.1016/j.sbi.2015.09.004.
  • Carlos A. Blanco, Cristina Andrés-Iglesias, Olimpio Montero. Low-alcohol Beers: Flavor Compounds, Defects, and Improvement Strategies // Critical Reviews in Food Science and Nutrition. — 2014. — August (vol. 56, iss. 8). — P. 1379—1388. — ISSN 1040-8398. — DOI:10.1080/10408398.2012.733979.
  • Lambert A. Doezema, Teresa Longin, William Cody, Véronique Perraud, Matthew L. Dawson, Michael J. Ezell, John Greaves, Kathleen R. Johnson, Barbara J. Finlayson-Pitts. Analysis of secondary organic aerosols in air using extractive electrospray ionization mass spectrometry (EESI-MS) // RSC Advances. — 2012. — Vol. 2, iss. 7. — P. 2930–2938. — ISSN 2046-2069. — DOI:10.1039/c2ra00961g.
  • Hopper J. T. S., Robinson C. V. Mass Spectrometry Quantifies Protein Interactions-From Molecular Chaperones to Membrane Porins // Angewandte Chemie International Edition. — 2014. — October (vol. 53, iss. 51). — P. 14002–14015. — ISSN 1433-7851. — DOI:10.1002/anie.201403741.
  • Lars Konermann, Siavash Vahidi, Modupeola A. Sowole. Mass Spectrometry Methods for Studying Structure and Dynamics of Biological Macromolecules (Review) // Analytical Chemistry. — 2014. — January (vol. 86, iss. 1). — P. 213–232. — ISSN 0003-2700. — DOI:10.1021/ac4039306.
  • Thomas Wyttenbach, Nicholas A. Pierson, David E. Clemmer, Michael T. Bowers. Ion Mobility Analysis of Molecular Dynamics // Annual Review of Physical Chemistry. — 2014. — April (vol. 65, iss. 1). — P. 175–196. — ISSN 0066-426X. — DOI:10.1146/annurev-physchem-040513-103644.
  • Hannah J. Maple, Rachel A. Garlish, Laura Rigau-Roca, John Porter, Ian Whitcombe, Christine E. Prosser, Jeff Kennedy, Alistair J. Henry, Richard J. Taylor, Matthew P. Crump, John Crosby. Automated Protein–Ligand Interaction Screening by Mass Spectrometry // Journal of Medicinal Chemistry. — 2012. — January (vol. 55, iss. 2). — P. 837–851. — ISSN 0022-2623. — DOI:10.1021/jm201347k.
  • Biswapriya B. Misra, Sarah M. Assmann, Sixue Chen. Plant single-cell and single-cell-type metabolomics // Trends in Plant Science. — 2014. — October (vol. 19, iss. 10). — P. 637–646. — ISSN 1360-1385. — DOI:10.1016/j.tplants.2014.05.005.
  • James K. Sims, Sara Manteiga, Kyongbum Lee. Towards high resolution analysis of metabolic flux in cells and tissues // Current Opinion in Biotechnology. — 2013. — October (vol. 24, iss. 5). — P. 933–939. — ISSN 0958-1669. — DOI:10.1016/j.copbio.2013.07.001.
  • Xiangwei He, Qiushui Chen, Yandong Zhang, Jin-Ming Lin. Recent advances in microchip-mass spectrometry for biological analysis // TrAC - Trends in Analytical Chemistry. — 2014. — January (vol. 53). — P. 84–97. — ISSN 0165-9936. — DOI:10.1016/j.trac.2013.09.013.
  • Karel Klepárník, František Foret. Recent advances in the development of single cell analysis — A review // Analytica Chimica Acta. — 2013. — October (vol. 800). — P. 12–21. — ISSN 0003-2670. — DOI:10.1016/j.aca.2013.09.004.
  • Dan Gao, Hongxia Liu, Yuyang Jiang, Jin-Ming Lin. Recent advances in microfluidics combined with mass spectrometry: technologies and applications // Lab on a Chip. — 2013. — Vol. 13, iss. 17. — P. 3309–3322. — ISSN 1473-0197. — DOI:10.1039/c3lc50449b.
  • Yunyun Yang, Yanying Huang, Junhui Wu, Ning Liu, Jiewei Deng. Single-cell analysis by ambient mass spectrometry // TrAC Trends in Analytical Chemistry. — 2017. — May (vol. 90). — P. 14–26. — ISSN 0165-9936. — DOI:10.1016/j.trac.2017.02.009.
  • Sifeng Mao, Weiwei Li, Qiang Zhang, Wanling Zhang, Qiushi Huang, Jin-Ming Lin. Cell analysis on chip-mass spectrometry // TrAC Trends in Analytical Chemistry. — 2018. — October (vol. 107). — P. 43–59. — ISSN 0165-9936. — DOI:10.1016/j.trac.2018.06.019.
  • Daniel J. Cook, Jens Nielsen. Genome-scale metabolic models applied to human health and disease // Wiley Interdisciplinary Reviews: Systems Biology and Medicine. — 2017. — November/December (vol. 9, iss. 6). — P. e1393 [1-18]. — ISSN 1939-5094. — DOI:10.1002/wsbm.1393.
  • Kerstin Galler, Katharina Bräutigam, Christina Große, Jürgen Popp, Ute Neugebauer. Making a big thing of a small cell – recent advances in single cell analysis // The Analyst. — 2014. — February (vol. 139, iss. 6). — P. 1237–1273. — ISSN 0003-2654. — DOI:10.1039/c3an01939j.
  • Melissa K. Passarelli, Andrew G. Ewing. Single-cell imaging mass spectrometry // Current Opinion in Chemical Biology. — 2013. — October (vol. 17, iss. 5). — P. 854–859. — ISSN 1367-5931. — DOI:10.1016/j.cbpa.2013.07.017.
Articles
  • Hansen K., Montavon G., Biegler F., Fazli S., Rupp M. Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies // Journal of Chemical Theory and Computation. — 2013. — July (vol. 9, iss. 8). — P. 3404–3419. — ISSN 1549-9618. — DOI:10.1021/ct400195d.
    • Montavon G., Rupp M., Gobre V., Vazquez-Mayagoitia A., Hansen K., Tkatchenko A., Müller K.-R., Lilienfeld A. O. Machine learning of molecular electronic properties in chemical compound space // New Journal of Physics. — 2013. — Vol. 15, iss. 9. — P. 095003 [1–16]. — ISSN 1367-2630. — DOI:10.1088/1367-2630/15/9/095003.
  • Kusne A. G., Gao T., Mehta A., Ke L., Nguyen M. C., Ho K.-M., Antropov V., Wang C.-Z., Kramer M. J., Long Ch., Takeuchi I. On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets // Scientific Reports. — 2014. — September (vol. 4, iss. 1). — P. 6367 [1–7]. — ISSN 2045-2322. — DOI:10.1038/srep06367.
    • Iwasaki Y., Kusne A. G., Takeuchi I. Comparison of dissimilarity measures for cluster analysis of X-ray diffraction data from combinatorial libraries // npj Computational Materials. — 2017. — February (vol. 3, iss. 1, no. 4 [1–9]). — ISSN 2057-3960. — DOI:10.1038/s41524-017-0006-2.
  • Granda J. M., Jurczak J. Artificial Neural Networks for Guest Chirality Classification through Supramolecular Interactions // Chemistry — A European Journal. — 2014. — September (vol. 20, iss. 39). — P. 12368–12372. — ISSN 0947-6539. — DOI:10.1002/chem.201404081.
  • Hajinazar S., Shao J., Kolmogorov A. N. Stratified construction of neural network based interatomic models for multicomponent materials // Physical Review B. — 2017. — January (vol. 95, iss. 1). — P. 14114 [1–13]. — DOI:10.1103/PhysRevB.95.014114.
  • Karton A., Yu L.-J., Kesharwani M. K., Martin J. M. L. Heats of formation of the amino acids re-examined by means of W1-F12 and W2-F12 theories // Theoretical Chemistry Accounts. — 2014. — April (vol. 133, iss. 6). — P. 1483 [1–15]. — ISSN 1432-881X. — DOI:10.1007/s00214-014-1483-8.
  • Ghosh M. K., Choi T. H., Choi C. H. Conformational free energy surfaces of non-ionized glycine in aqueous solution // Theoretical Chemistry Accounts. — 2016. — Vol. 135, iss. 4. — P. 103 [1–11]. — ISSN 1432-881X. — DOI:10.1007/s00214-016-1857-1.
  • Bazsó G., Magyarfalvi G., Tarczay G. Near-infrared laser induced conformational change and UV laser photolysis of glycine in low-temperature matrices: Observation of a short-lived conformer // Journal of Molecular Structure. — 2012. — October (vol. 1025). — P. 33–42. — ISSN 0022-2860. — DOI:10.1016/j.molstruc.2012.04.066.
  • Barone V., Biczysko M., Bloino J., Puzzarini Cr. Accurate structure, thermodynamic and spectroscopic parameters from CC and CC/DFT schemes: the challenge of the conformational equilibrium in glycine // Physical Chemistry Chemical Physics. — 2013. — Vol. 15, iss. 25. — P. 10094—10111. — ISSN 1463-9076. — DOI:10.1039/c3cp50439e.
    • Barone V., Biczysko M., Bloino J., Puzzarini Cr. Characterization of the Elusive Conformers of Glycine from State-of-the-Art Structural, Thermodynamic, and Spectroscopic Computations: Theory Complements Experiment // Journal of Chemical Theory and Computation. — 2013. — February (vol. 9, iss. 3). — P. 1533–1547. — ISSN 1549-9618. — DOI:10.1021/ct3010672.
  • Cormanich R. A., Rittner R., Bühl M. Conformational preferences of Ac-Gly-NHMe in solution // RSC Advances. — 2015. — Vol. 5, iss. 17. — P. 13052—13060. — ISSN 2046-2069. — DOI:10.1039/c4ra16472e.
  • Liu F., Yu J., Huang Y.-R. High-level theoretical study of the evolution of abundances and interconversion of glycine conformers // Chinese Physics B. — 2018. — April (vol. 27, iss. 4). — P. 043102 [1-8]. — ISSN 1674-1056. — DOI:10.1088/1674-1056/27/4/043102.
  • Sacchi M., Jenkins S. J. Co-adsorption of water and glycine on Cu{110} // Physical Chemistry Chemical Physics. — 2014. — Vol. 16, iss. 13. — P. 6101—6107. — ISSN 1463-9076. — DOI:10.1039/c3cp55094j.
  • Farrokhpour H., Fathi F., Naves De Brito A. Theoretical and Experimental Study of Valence Photoelectron Spectrum of d,l-Alanine Amino Acid // The Journal of Physical Chemistry A. — 2012. — June (vol. 116, iss. 26). — P. 7004–7015. — ISSN 1089-5639. — DOI:10.1021/jp3023716.
  • Nunes C. M., Lapinski L., Fausto R., Reva I. Near-IR laser generation of a high-energy conformer of L-alanine and the mechanism of its decay in a low-temperature nitrogen matrix // The Journal of Chemical Physics. — 2013. — March (vol. 138, iss. 12). — P. 125101 [1–12]. — ISSN 0021-9606. — DOI:10.1063/1.4795823.
  • Tia M., Cunha De Miranda B. K., Daly St., Gaie-Levrel Fr., Garcia G. A., Nahon L., Powis I. VUV Photodynamics and Chiral Asymmetry in the Photoionization of Gas Phase Alanine Enantiomers // The Journal of Physical Chemistry A. — 2014. — April (vol. 118, iss. 15). — P. 2765–2779. — ISSN 1089-5639. — DOI:10.1021/jp5016142.
  • Holly J. Butler, Lorna Ashton, Benjamin Bird, Gianfelice Cinque, Kelly Curtis. Using Raman spectroscopy to characterize biological materials // Nature Protocols. — 2016. — March (vol. 11, iss. 4). — P. 664—687. — ISSN 1754-2189. — DOI:10.1038/nprot.2016.036.
  • Marek Hoehse, Andrea Paul, Igor Gornushkin, Ulrich Panne. Multivariate classification of pigments and inks using combined Raman spectroscopy and LIBS // Analytical and Bioanalytical Chemistry. — 2012. — February (vol. 402, iss. 4). — P. 1443–1450. — ISSN 1618-2642. — DOI:10.1007/s00216-011-5287-6.
  • Narahara Chari Dingari, Ishan Barman, Ashwin Kumar Myakalwar, Surya P. Tewari, Manoj Kumar Gundawar. Incorporation of Support Vector Machines in the LIBS Toolbox for Sensitive and Robust Classification Amidst Unexpected Sample and System Variability // Analytical Chemistry. — 2012. — March (vol. 84, iss. 6). — P. 2686–2694. — ISSN 0003-2700. — DOI:10.1021/ac202755e.
  • Rikke Ingemann Tange, Morten Arendt Rasmussen, Eizo Taira, Rasmus Bro. Benchmarking support vector regression against partial least squares regression and artificial neural network: Effect of sample size on model performance // Journal of Near Infrared Spectroscopy. — 2017. — October (vol. 25, iss. 6). — P. 381–390. — ISSN 0967-0335. — DOI:10.1177/0967033517734945.
    • Rikke Tange, Morten Arendt Rasmussen, Eizo Taira, Rasmus Bro. Application of Support Vector Regression for Simultaneous Modelling of near Infrared Spectra from Multiple Process Steps // Journal of Near Infrared Spectroscopy. — 2015. — Vol. 23, iss. 2. — P. 75–84. — ISSN 0967-0335. — DOI:10.1255/jnirs.1149.
  • Anna Palou, Aira Miró, Marcelo Blanco, Rafael Larraz, José Francisco Gómez. Calibration sets selection strategy for the construction of robust PLS models for prediction of biodiesel/diesel blends physico-chemical properties using NIR spectroscopy // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. — 2017. — June (vol. 180). — P. 119–126. — ISSN 1386-1425. — DOI:10.1016/j.saa.2017.03.008.
  • Abbas Rammal, Eric Perrin, Valeriu Vrabie, Rabih Assaf, Hassan Fenniri. Selection of discriminant mid-infrared wavenumbers by combining a naïve Bayesian classifier and a genetic algorithm: Application to the evaluation of lignocellulosic biomass biodegradation // Mathematical Biosciences. — 2017. — July (vol. 289). — P. 153–161. — ISSN 0025-5564. — DOI:10.1016/j.mbs.2017.05.002.
  • Farhad Gharagheizi, Ali Eslamimanesh, Behnam Tirandazi, Amir H. Mohammadi, Dominique Richon. Handling a very large data set for determination of surface tension of chemical compounds using Quantitative Structure–Property Relationship strategy // Chemical Engineering Science. — 2011. — November (vol. 66, iss. 21). — P. 4991–5023. — ISSN 0009-2509. — DOI:10.1016/j.ces.2011.06.052.
  • Xue Li, Bin Hu, Jianhua Ding, Huanwen Chen. Rapid characterization of complex viscous samples at molecular levels by neutral desorption extractive electrospray ionization mass spectrometry // Nature Protocols. — 2011. — June (vol. 6, iss. 7). — P. 1010–1025. — ISSN 1754-2189. — DOI:10.1038/nprot.2011.337.
  • Ondrej Šedo, Ivana Márová, Zbyněk Zdráhal. Beer fingerprinting by Matrix-Assisted Laser Desorption-Ionisation-Time of Flight Mass Spectrometry // Food Chemistry. — 2012. — November (vol. 135, iss. 2). — P. 473–478. — ISSN 0308-8146. — DOI:10.1016/j.foodchem.2012.05.021.
  • Cédric Przybylski, Véronique Bonnet, Christine Cézard. Probing the common alkali metal affinity of native and variously methylated β-cyclodextrins by combining electrospray-tandem mass spectrometry and molecular modeling // Physical Chemistry Chemical Physics. — 2015. — August (vol. 17, iss. 29). — P. 19288–19305. — ISSN 1463-9076. — DOI:10.1039/c5cp02895g.
  • Moshe Goldstein, Liron Zmiri, Elad Segev, Thomas Wyttenbach, R. Benny Gerber. An atomistic structure of ubiquitin +13 relevant in mass spectrometry: Theoretical prediction and comparison with experimental cross sections // International Journal of Mass Spectrometry. — 2014. — June (vol. 367). — P. 10–15. — ISSN 1387-3806. — DOI:10.1016/j.ijms.2014.04.013.
  • Ana M. Fernandes, Bernd Schröder, Tânia Barata, Mara G. Freire, João A. P. Coutinho. Inclusion Complexes of Ionic Liquids and Cyclodextrins: Are They Formed in the Gas Phase? // Journal of the American Society for Mass Spectrometry. — 2014. — May (vol. 25, iss. 5). — P. 852–860. — ISSN 1044-0305. — DOI:10.1007/s13361-013-0820-9.
  • Vincent Lemaur, Glenn Carroy, Frédéric Poussigue, Fabien Chirot, Julien De Winter. Homotropic Allosterism: In-Depth Structural Analysis of the Gas-Phase Noncovalent Complexes Associating a Double-Cavity Cucurbit(n)uril-Type Host and Size-Selected Protonated Amino Compounds // ChemPlusChem. — 2013. — September (vol. 78, iss. 9). — P. 959–969. — ISSN 2192-6506. — DOI:10.1002/cplu.201300208.
  • Hilde-Marléne Bergman, Ingela Lanekoff. Profiling and quantifying endogenous molecules in single cells using nano-DESI MS // The Analyst. — 2017. — October (vol. 142, iss. 19). — P. 3639–3647. — ISSN 0003-2654. — DOI:10.1039/c7an00885f.
  • Arieh Moussaieff, Ilana Rogachev, Leonid Brodsky, Sergey Malitsky, Ted W. Toal. High-resolution metabolic mapping of cell types in plant roots // Proceedings of the National Academy of Sciences. — 2013. — March (vol. 110, iss. 13). — P. E1232–E1241. — ISSN 0027-8424. — DOI:10.1073/pnas.1302019110.
  • Takashi Fujii, Shuichi Matsuda, Mónica Lorenzo Tejedor, Tsuyoshi Esaki, Iwao Sakane. Direct metabolomics for plant cells by live single-cell mass spectrometry // Nature Protocols. — 2015. — August (vol. 10, iss. 9). — P. 1445–1456. — ISSN 1754-2189. — DOI:10.1038/nprot.2015.084.
  • Russell H. Cole, Shi-Yang Tang, Christian A. Siltanen, Payam Shahi, Jesse Q. Zhang. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells // Proceedings of the National Academy of Sciences. — 2017. — August (vol. 114, iss. 33). — P. 8728–8733. — ISSN 0027-8424. — DOI:10.1073/pnas.1704020114.
  • Laura M. Cole, Malcolm R. Clench. Mass spectrometry imaging for the proteomic study of clinical tissue // Proteomics — Clinical Applications. — 2015. — April (vol. 9, iss. 3—4). — P. 335–341. — ISSN 1862-8346. — DOI:10.1002/prca.201400103.

Links