Chemistry:Amino acid

From HandWiki
Short description
Organic compounds containing amine and carboxylic groups
Structure of generic L-amino acid in its un-ionized form.

Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid.[1] The key elements of an amino acid are carbon (C), hydrogen (H), oxygen (O), and nitrogen (N), although other elements are found in the side chains of certain amino acids. About 500 naturally occurring amino acids are known (As of 1983) (though only 20 appear in the genetic code) and can be classified in many ways.[2] They can be classified according to the core structural functional groups' locations as alpha- (α-), beta- (β-), gamma- (γ-) or delta- (δ-) amino acids; other categories relate to polarity, pH level, and side chain group type (aliphatic, acyclic, aromatic, containing hydroxyl or sulfur, etc.). In the form of proteins, amino acid residues form the second-largest component (water is the largest) of human muscles and other tissues.[3] Beyond their role as residues in proteins, amino acids participate in a number of processes such as neurotransmitter transport and biosynthesis.

In biochemistry, amino acids which have the amine group attached to the (alpha-) carbon atom next to the carboxyl group have particular importance. They are known as 2-, alpha-, or α-amino acids (generic formula H2NCHRCOOH in most cases,[lower-alpha 1] where R is an organic substituent known as a "side chain");[4] often the term "amino acid" is used to refer specifically to these. They include the 22 proteinogenic ("protein-building") amino acids,[5][6][7] which combine into peptide chains ("polypeptides") to form the building blocks of a vast array of proteins.[8] These are all L-stereoisomers ("left-handed" isomers), although a few D-amino acids ("right-handed") occur in bacterial envelopes, as a neuromodulator (D-serine), and in some antibiotics.[9]

Twenty of the proteinogenic amino acids are encoded directly by triplet codons in the genetic code and are known as "standard" amino acids. The other two ("nonstandard" or "non-canonical") are selenocysteine (present in many prokaryotes as well as most eukaryotes, but not coded directly by DNA), and pyrrolysine (found only in some archaea and one bacterium). Pyrrolysine and selenocysteine are encoded via variant codons; for example, selenocysteine is encoded by stop codon and SECIS element.[10][11][12] N-formylmethionine (which is often the initial amino acid of proteins in bacteria, mitochondria, and chloroplasts) is generally considered as a form of methionine rather than as a separate proteinogenic amino acid. Codon–tRNA combinations not found in nature can also be used to "expand" the genetic code and form novel proteins known as alloproteins incorporating non-proteinogenic amino acids.[13][14][15]

Many important proteinogenic and non-proteinogenic amino acids have biological functions. For example, in the human brain, glutamate (standard glutamic acid) and gamma-aminobutyric acid ("GABA", nonstandard gamma-amino acid) are, respectively, the main excitatory and inhibitory neurotransmitters.[16] Hydroxyproline, a major component of the connective tissue collagen, is synthesised from proline. Glycine is a biosynthetic precursor to porphyrins used in red blood cells. Carnitine is used in lipid transport. Nine proteinogenic amino acids are called "essential" for humans because they cannot be produced from other compounds by the human body and so must be taken in as food. Others may be conditionally essential for certain ages or medical conditions. Essential amino acids may also vary from species to species.[lower-alpha 2] Because of their biological significance, amino acids are important in nutrition and are commonly used in nutritional supplements, fertilizers, feed, and food technology. Industrial uses include the production of drugs, biodegradable plastics, and chiral catalysts.

History

The first few amino acids were discovered in the early 19th century.[17][18] In 1806, French chemists Louis-Nicolas Vauquelin and Pierre Jean Robiquet isolated a compound in asparagus that was subsequently named asparagine, the first amino acid to be discovered.[19][20] Cystine was discovered in 1810,[21] although its monomer, cysteine, remained undiscovered until 1884.[20][22] Glycine and leucine were discovered in 1820.[23] The last of the 20 common amino acids to be discovered was threonine in 1935 by William Cumming Rose, who also determined the essential amino acids and established the minimum daily requirements of all amino acids for optimal growth.[24][25]

The unity of the chemical category was recognized by Wurtz in 1865, but he gave no particular name to it.[26] The first use of the term "amino acid" in the English language dates from 1898,[27] while the German term, Aminosäure, was used earlier.[28] Proteins were found to yield amino acids after enzymatic digestion or acid hydrolysis. In 1902, Emil Fischer and Franz Hofmeister independently proposed that proteins are formed from many amino acids, whereby bonds are formed between the amino group of one amino acid with the carboxyl group of another, resulting in a linear structure that Fischer termed "peptide".[29]

General structure

The 21 proteinogenic α-amino acids found in eukaryotes, grouped according to their side chains' pKa values and charges carried at physiological pH (7.4)

In the structure shown at the top of the page, R represents a side chain specific to each amino acid. The carbon atom next to the carboxyl group is called the α–carbon. Amino acids containing an amino group bonded directly to the alpha carbon are referred to as alpha amino acids.[30] These include amino acids such as proline which contain secondary amines, which used to be called "imino acids".[31][32][33]

Isomerism

Alpha-amino acids are the common natural forms of amino acids. With the exception of glycine, other natural amino acids adopt the L configuration.[34] L-amino acids represent all of the amino acids found in proteins during translation in the ribosome.

The L and D convention for amino acid configuration refers not to the optical activity of the amino acid itself but rather to the optical activity of the isomer of glyceraldehyde from which that amino acid can, in theory, be synthesized (D-glyceraldehyde is dextrorotatory; L-glyceraldehyde is levorotatory). In alternative fashion, the (S) and (R) designators are used to indicate the absolute configuration. Almost all of the amino acids in proteins are (S) at the α carbon, with cysteine being (R) and glycine non-chiral.[35] Cysteine has its side chain in the same geometric location as the other amino acids, but the R/S terminology is reversed because sulfur has higher atomic number compared to the carboxyl oxygen which gives the side chain a higher priority by the Cahn-Ingold-Prelog sequence rules, whereas the atoms in most other side chains give them lower priority compared to the carboxyl group.(citation?)

D-amino acid residues are found in some proteins, but they are rare.

Side chains

Amino acids are designated as α- when the nitrogen atom is attached to the carbon atom adjacent to the carboxyl group: in this case the compound contains the substructure N–C–CO2. Amino acids with the sub-structure N–C–C–CO2 are classified as β- amino acids. γ-Amino acids contain the substructure N–C–C–C–CO2, and so on.[36]

Amino acids are usually classified by the properties of their side chain into four groups. The side chain can make an amino acid a weak acid or a weak base, and a hydrophile if the side chain is polar or a hydrophobe if it is nonpolar.[34] The phrase "branched-chain amino acids" or BCAA refers to the amino acids having aliphatic side chains that are linear; these are leucine, isoleucine, and valine. Proline is the only proteinogenic amino acid whose side-group links to the α-amino group and, thus, is also the only proteinogenic amino acid containing a secondary amine at this position.[34] In chemical terms, proline is, therefore, an imino acid, since it lacks a primary amino group,[37] although it is still classed as an amino acid in the current biochemical nomenclature[38] and may also be called an "N-alkylated alpha-amino acid".[39]

Zwitterions

An amino acid in its (1) molecular and (2) zwitterionic forms
Main page: Physics:Zwitterion

In aqueous solution amino acids exist in two forms (as illustrated at the right), the molecular form and the zwitterion form in equilibrium with each other. The two forms coexist over the pH range pK1 − 2 to pK2 + 2, which for glycine is pH 0–12. The ratio of the concentrations of the two isomers is independent of pH. The value of this ratio cannot be determined experimentally.

Because all amino acids contain amine and carboxylic acid functional groups, they are amphiprotic.[34] At pH = pK1 (approximately 2.2) there will be equal concentration of the species NH+
3
CH(R)CO
2
H
and NH+
3
CH(R)CO
2
and at pH = pK2 (approximately 10) there will be equal concentration of the species NH+
3
CH(R)CO
2
and NH
2
CH(R)CO
2
. It follows that the neutral molecule and the zwitterion are effectively the only species present at biological pH.[40]

It is generally assumed that the concentration of the zwitterion is much greater than the concentration of the neutral molecule on the basis of comparisons with the known pK values of amines and carboxylic acids.

Isoelectric point

Composite of titration curves of twenty proteinogenic amino acids grouped by side chain category

At pH values between the two pKa values, the zwitterion predominates, but coexists in dynamic equilibrium with small amounts of net negative and net positive ions. At the exact midpoint between the two pKa values, the trace amount of net negative and trace of net positive ions exactly balance, so that average net charge of all forms present is zero.[41] This pH is known as the isoelectric point pI, so pI = 1/2(pKa1 + pKa2). For amino acids with charged side chains, the pKa of the side chain is involved. Thus for aspartate or glutamate with negative side chains, pI = 1/2(pKa1 + pKa(R)), where pKa(R) is the side chain pKa. Cysteine also has potentially negative side chain with pKa(R) = 8.14, so pI should be calculated as for aspartate and glutamate, even though the side chain is not significantly charged at physiological pH. For histidine, lysine, and arginine with positive side chains, pI = 1/2(pKa(R) + pKa2). Amino acids have zero mobility in electrophoresis at their isoelectric point, although this behaviour is more usually exploited for peptides and proteins than single amino acids. Zwitterions have minimum solubility at their isoelectric point, and some amino acids (in particular, with nonpolar side chains) can be isolated by precipitation from water by adjusting the pH to the required isoelectric point.

Occurrence and functions in biochemistry

A protein depicted as a long unbranched string of linked circles each representing amino acids
A polypeptide is an unbranched chain of amino acids
Diagrammatic comparison of the structures of β-alanine and α-alanine
β-Alanine and its α-alanine isomer
A diagram showing the structure of selenocysteine
The amino acid selenocysteine

Proteinogenic amino acids

Amino acids are the structural units (monomers) that make up proteins. They join together to form short polymer chains called peptides or longer chains called either polypeptides or proteins. These chains are linear and unbranched, with each amino acid residue within the chain attached to two neighboring amino acids. The process of making proteins encoded by DNA/RNA genetic material is called translation and involves the step-by-step addition of amino acids to a growing protein chain by a ribozyme that is called a ribosome.[42] The order in which the amino acids are added is read through the genetic code from an mRNA template, which is an RNA copy of one of the organism's genes.

Twenty-two amino acids are naturally incorporated into polypeptides and are called proteinogenic or natural amino acids.[34] Of these, 20 are encoded by the universal genetic code. The remaining 2, selenocysteine and pyrrolysine, are incorporated into proteins by unique synthetic mechanisms. Selenocysteine is incorporated when the mRNA being translated includes a SECIS element, which causes the UGA codon to encode selenocysteine instead of a stop codon.[43] Pyrrolysine is used by some methanogenic archaea in enzymes that they use to produce methane. It is coded for with the codon UAG, which is normally a stop codon in other organisms.[44] This UAG codon is followed by a PYLIS downstream sequence.[45]

Several independent evolutionary studies, using different types of data, have suggested that Gly, Ala, Asp, Val, Ser, Pro, Glu, Leu, Thr (i.e. G, A, D, V, S, P, E, L, T) may belong to a group of amino acids that constituted the early genetic code, whereas Cys, Met, Tyr, Trp, His, Phe (i.e. C, M, Y, W, H, F) may belong to a group of amino acids that constituted later additions of the genetic code.[46][47][48][49]

Non-proteinogenic amino acids

Main page: Chemistry:Non-proteinogenic amino acids

Aside from the 22 proteinogenic amino acids, many non-proteinogenic amino acids are known. Those either are not found in proteins (for example carnitine, GABA, levothyroxine) or are not produced directly and in isolation by standard cellular machinery (for example, hydroxyproline and selenomethionine).

Non-proteinogenic amino acids that are found in proteins are formed by post-translational modification, which is modification after translation during protein synthesis. These modifications are often essential for the function or regulation of a protein. For example, the carboxylation of glutamate allows for better binding of calcium cations,[50] and collagen contains hydroxyproline, generated by hydroxylation of proline.[51] Another example is the formation of hypusine in the translation initiation factor EIF5A, through modification of a lysine residue.[52] Such modifications can also determine the localization of the protein, e.g., the addition of long hydrophobic groups can cause a protein to bind to a phospholipid membrane.[53]

Some non-proteinogenic amino acids are not found in proteins. Examples include 2-aminoisobutyric acid and the neurotransmitter gamma-aminobutyric acid. Non-proteinogenic amino acids often occur as intermediates in the metabolic pathways for standard amino acids – for example, ornithine and citrulline occur in the urea cycle, part of amino acid catabolism (see below).[54] A rare exception to the dominance of α-amino acids in biology is the β-amino acid beta alanine (3-aminopropanoic acid), which is used in plants and microorganisms in the synthesis of pantothenic acid (vitamin B5), a component of coenzyme A.[55]

Nonstandard amino acids

The 20 amino acids that are encoded directly by the codons of the universal genetic code are called standard or canonical amino acids. A modified form of methionine (N-formylmethionine) is often incorporated in place of methionine as the initial amino acid of proteins in bacteria, mitochondria and chloroplasts. Other amino acids are called nonstandard or non-canonical. Most of the nonstandard amino acids are also non-proteinogenic (i.e. they cannot be incorporated into proteins during translation), but two of them are proteinogenic, as they can be incorporated translationally into proteins by exploiting information not encoded in the universal genetic code.

The two nonstandard proteinogenic amino acids are selenocysteine (present in many non-eukaryotes as well as most eukaryotes, but not coded directly by DNA) and pyrrolysine (found only in some archaea and at least one bacterium). The incorporation of these nonstandard amino acids is rare. For example, 25 human proteins include selenocysteine in their primary structure,[56] and the structurally characterized enzymes (selenoenzymes) employ selenocysteine as the catalytic moiety in their active sites.[57] Pyrrolysine and selenocysteine are encoded via variant codons. For example, selenocysteine is encoded by stop codon and SECIS element.[10][11][12]

In human nutrition

Diagram showing the relative occurrence of amino acids in blood serum as obtained from diverse diets.
Share of amino acid in various human diets and the resulting mix of amino acids in human blood serum. Glutamate and glutamine are the most frequent in food at over 10%, while alanine, glutamine, and glycine are the most common in blood.

When taken up into the human body from the diet, the 20 standard amino acids either are used to synthesize proteins, other biomolecules, or are oxidized to urea and carbon dioxide as a source of energy.[58] The oxidation pathway starts with the removal of the amino group by a transaminase; the amino group is then fed into the urea cycle. The other product of transamidation is a keto acid that enters the citric acid cycle.[59] Glucogenic amino acids can also be converted into glucose, through gluconeogenesis.[60] Of the 20 standard amino acids, nine (His, Ile, Leu, Lys, Met, Phe, Thr, Trp and Val) are called essential amino acids because the human body cannot synthesize them from other compounds at the level needed for normal growth, so they must be obtained from food.[61][62][63] In addition, cysteine, tyrosine, and arginine are considered semiessential amino acids, and taurine a semiessential aminosulfonic acid in children. The metabolic pathways that synthesize these monomers are not fully developed.[64][65] The amounts required also depend on the age and health of the individual, so it is hard to make general statements about the dietary requirement for some amino acids. Dietary exposure to the nonstandard amino acid BMAA has been linked to human neurodegenerative diseases, including ALS.[66][67]

Signaling cascade diagram
Diagram of the molecular signaling cascades that are involved in myofibrillar muscle protein synthesis and mitochondrial biogenesis in response to physical exercise and specific amino acids or their derivatives (primarily L-leucine and HMB).[68] Many amino acids derived from food protein promote the activation of mTORC1 and increase protein synthesis by signaling through Rag GTPases.[68][69]
Abbreviations and representations:
 • PLD: phospholipase D
 • PA: phosphatidic acid
 • mTOR: mechanistic target of rapamycin
 • AMP: adenosine monophosphate
 • ATP: adenosine triphosphate
 • AMPK: AMP-activated protein kinase
 • PGC‐1α: peroxisome proliferator-activated receptor gamma coactivator-1α
 • S6K1: p70S6 kinase
 • 4EBP1: eukaryotic translation initiation factor 4E-binding protein 1
 • eIF4E: eukaryotic translation initiation factor 4E
 • RPS6: ribosomal protein S6
 • eEF2: eukaryotic elongation factor 2
 • RE: resistance exercise; EE: endurance exercise
 • Myo: myofibrillar; Mito: mitochondrial
 • AA: amino acids
 • HMB: β-hydroxy β-methylbutyric acid
 • ↑ represents activation
 • Τ represents inhibition
Graph of muscle protein synthesis vs time
Resistance training stimulates muscle protein synthesis (MPS) for a period of up to 48 hours following exercise (shown by lighter dotted line).[70] Ingestion of a protein-rich meal at any point during this period will augment the exercise-induced increase in muscle protein synthesis (shown by solid lines).[70]

Non-protein functions

{{Annotated image 4 | caption = {{{caption|In humans, catecholamines and phenethylaminergic trace amines are derived from the amino acid {{nowrap|L-phenylalanine}}.}}} | header_background = #F0F8FF | header = Biosynthetic pathways for catecholamines and trace amines in the human brain<ref name="Trace amine template 1">Broadley KJ (March 2010). "The vascular effects of trace amines and amphetamines". Pharmacol. Ther. 125 (3): 363–375. doi:10.1016/j.pharmthera.2009.11.005. PMID 19948186. </ref>[71][72] | alt = Graphic of catecholamine and trace amine biosynthesis | image = Catecholamine and trace amine biosynthesis.png | image-width = 580 | image-left = 5 | image-top = 0 | align = right | width = 590 | height = 585 | annot-font-size = 14 | annot-text-align = center | annotations =

{{annotation|50|565|{{if pagename|Adrenaline=Adrenaline|Epinephrine=Epinephrine|Catecholamine=Epinephrine|other=Epinephrine}}}}

{{annotation|245|60|{{if pagename|Phenethylamine=Phenethylamine|Trace amine=Phenethylamine|Neurobiological effects of physical exercise={{highlight|Phenethylamine}}|other=Phenethylamine}}}}

{{annotation|245|565|{{if pagename|Norepinephrine=Norepinephrine|Adrenaline=Noradrenaline|Catecholamine=Norepinephrine|other=Norepinephrine}}}}

{{annotation|440|295|p-Octopamine}}}}

primary
pathway
brain
CYP2D6
minor
pathway

In humans, non-protein amino acids also have important roles as metabolic intermediates, such as in the biosynthesis of the neurotransmitter gamma-aminobutyric acid (GABA). Many amino acids are used to synthesize other molecules, for example:

Some nonstandard amino acids are used as defenses against herbivores in plants.[78] For example, canavanine is an analogue of arginine that is found in many legumes,[79] and in particularly large amounts in Canavalia gladiata (sword bean).[80] This amino acid protects the plants from predators such as insects and can cause illness in people if some types of legumes are eaten without processing.[81] The non-protein amino acid mimosine is found in other species of legume, in particular Leucaena leucocephala.[82] This compound is an analogue of tyrosine and can poison animals that graze on these plants.

Uses in industry

Amino acids are used for a variety of applications in industry, but their main use is as additives to animal feed. This is necessary, since many of the bulk components of these feeds, such as soybeans, either have low levels or lack some of the essential amino acids: lysine, methionine, threonine, and tryptophan are most important in the production of these feeds.[83] In this industry, amino acids are also used to chelate metal cations in order to improve the absorption of minerals from supplements, which may be required to improve the health or productivity of these animals.[84]

The food industry is also a major consumer of amino acids, in particular, glutamic acid, which is used as a flavor enhancer,[85] and aspartame (aspartylphenylalanine 1-methyl ester) as a low-calorie artificial sweetener.[86] Similar technology to that used for animal nutrition is employed in the human nutrition industry to alleviate symptoms of mineral deficiencies, such as anemia, by improving mineral absorption and reducing negative side effects from inorganic mineral supplementation.[87]

The chelating ability of amino acids has been used in fertilizers for agriculture to facilitate the delivery of minerals to plants in order to correct mineral deficiencies, such as iron chlorosis. These fertilizers are also used to prevent deficiencies from occurring and to improve the overall health of the plants.[88] The remaining production of amino acids is used in the synthesis of drugs and cosmetics.[83]

Similarly, some amino acids derivatives are used in pharmaceutical industry. They include 5-HTP (5-hydroxytryptophan) used for experimental treatment of depression,[89] L-DOPA (L-dihydroxyphenylalanine) for Parkinson's treatment,[90] and eflornithine drug that inhibits ornithine decarboxylase and used in the treatment of sleeping sickness.[91]

Expanded genetic code

Main page: Biology:Expanded genetic code

Since 2001, 40 non-natural amino acids have been added into protein by creating a unique codon (recoding) and a corresponding transfer-RNA:aminoacyl – tRNA-synthetase pair to encode it with diverse physicochemical and biological properties in order to be used as a tool to exploring protein structure and function or to create novel or enhanced proteins.[13][14]

Nullomers

Main page: Biology:Nullomers

Nullomers are codons that in theory code for an amino acid, however in nature there is a selective bias against using this codon in favor of another, for example bacteria prefer to use CGA instead of AGA to code for arginine.[92] This creates some sequences that do not appear in the genome. This characteristic can be taken advantage of and used to create new selective cancer-fighting drugs[93] and to prevent cross-contamination of DNA samples from crime-scene investigations.[94]

Chemical building blocks

Amino acids are important as low-cost feedstocks. These compounds are used in chiral pool synthesis as enantiomerically pure building blocks.[95]

Amino acids have been investigated as precursors chiral catalysts, such as for asymmetric hydrogenation reactions, although no commercial applications exist.[96]

Biodegradable plastics

Amino acids have been considered as components of biodegradable polymers, which have applications as environmentally friendly packaging and in medicine in drug delivery and the construction of prosthetic implants.[97] An interesting example of such materials is polyaspartate, a water-soluble biodegradable polymer that may have applications in disposable diapers and agriculture.[98] Due to its solubility and ability to chelate metal ions, polyaspartate is also being used as a biodegradeable antiscaling agent and a corrosion inhibitor.[99][100] In addition, the aromatic amino acid tyrosine has been considered as a possible replacement for phenols such as bisphenol A in the manufacture of polycarbonates.[101]

Synthesis

Main page: Biology:Amino acid synthesis
For the steps in the reaction, see the text.
The Strecker amino acid synthesis

Chemical synthesis

The commercial production of amino acids usually relies on mutant bacteria that overproduce individual amino acids using glucose as a carbon source. Some amino acids are produced by enzymatic conversions of synthetic intermediates. 2-Aminothiazoline-4-carboxylic acid is an intermediate in one industrial synthesis of L-cysteine for example. Aspartic acid is produced by the addition of ammonia to fumarate using a lyase.[102]

Biosynthesis

In plants, nitrogen is first assimilated into organic compounds in the form of glutamate, formed from alpha-ketoglutarate and ammonia in the mitochondrion. For other amino acids, plants use transaminases to move the amino group from glutamate to another alpha-keto acid. For example, aspartate aminotransferase converts glutamate and oxaloacetate to alpha-ketoglutarate and aspartate.[103] Other organisms use transaminases for amino acid synthesis, too.

Nonstandard amino acids are usually formed through modifications to standard amino acids. For example, homocysteine is formed through the transsulfuration pathway or by the demethylation of methionine via the intermediate metabolite S-adenosylmethionine,[104] while hydroxyproline is made by a post translational modification of proline.[105]

Microorganisms and plants synthesize many uncommon amino acids. For example, some microbes make 2-aminoisobutyric acid and lanthionine, which is a sulfide-bridged derivative of alanine. Both of these amino acids are found in peptidic lantibiotics such as alamethicin.[106] However, in plants, 1-aminocyclopropane-1-carboxylic acid is a small disubstituted cyclic amino acid that is an intermediate in the production of the plant hormone ethylene.[107]

Reactions

Amino acids undergo the reactions expected of the constituent functional groups.[108][109]

Peptide bond formation

Two amino acids are shown next to each other. One loses a hydrogen and oxygen from its carboxyl group (COOH) and the other loses a hydrogen from its amino group (NH2). This reaction produces a molecule of water (H2O) and two amino acids joined by a peptide bond (–CO–NH–). The two joined amino acids are called a dipeptide.
The condensation of two amino acids to form a dipeptide. The two amino acid residues are linked through a peptide bond

As both the amine and carboxylic acid groups of amino acids can react to form amide bonds, one amino acid molecule can react with another and become joined through an amide linkage. This polymerization of amino acids is what creates proteins. This condensation reaction yields the newly formed peptide bond and a molecule of water. In cells, this reaction does not occur directly; instead, the amino acid is first activated by attachment to a transfer RNA molecule through an ester bond. This aminoacyl-tRNA is produced in an ATP-dependent reaction carried out by an aminoacyl tRNA synthetase.[110] This aminoacyl-tRNA is then a substrate for the ribosome, which catalyzes the attack of the amino group of the elongating protein chain on the ester bond.[111] As a result of this mechanism, all proteins made by ribosomes are synthesized starting at their N-terminus and moving toward their C-terminus.

However, not all peptide bonds are formed in this way. In a few cases, peptides are synthesized by specific enzymes. For example, the tripeptide glutathione is an essential part of the defenses of cells against oxidative stress. This peptide is synthesized in two steps from free amino acids.[112] In the first step, gamma-glutamylcysteine synthetase condenses cysteine and glutamic acid through a peptide bond formed between the side chain carboxyl of the glutamate (the gamma carbon of this side chain) and the amino group of the cysteine. This dipeptide is then condensed with glycine by glutathione synthetase to form glutathione.[113]

In chemistry, peptides are synthesized by a variety of reactions. One of the most-used in solid-phase peptide synthesis uses the aromatic oxime derivatives of amino acids as activated units. These are added in sequence onto the growing peptide chain, which is attached to a solid resin support.[114] Libraries of peptides are used in drug discovery through high-throughput screening.[115]

The combination of functional groups allow amino acids to be effective polydentate ligands for metal–amino acid chelates.[116] The multiple side chains of amino acids can also undergo chemical reactions.

Catabolism

Catabolism of proteinogenic amino acids. Amino acids can be classified according to the properties of their main degradation products:[117]
* Glucogenic, with the products having the ability to form glucose by gluconeogenesis
* Ketogenic, with the products not having the ability to form glucose. These products may still be used for ketogenesis or lipid synthesis.
* Amino acids catabolized into both glucogenic and ketogenic products.

Degradation of an amino acid often involves deamination by moving its amino group to alpha-ketoglutarate, forming glutamate. This process involves transaminases, often the same as those used in amination during synthesis. In many vertebrates, the amino group is then removed through the urea cycle and is excreted in the form of urea. However, amino acid degradation can produce uric acid or ammonia instead. For example, serine dehydratase converts serine to pyruvate and ammonia.[77] After removal of one or more amino groups, the remainder of the molecule can sometimes be used to synthesize new amino acids, or it can be used for energy by entering glycolysis or the citric acid cycle, as detailed in image at right.

Complexation

Amino acids are bidentate ligands, forming transition metal amino acid complexes.[118]

AAcomplexation.png

Physicochemical properties of amino acids

The ca. 20 canonical amino acids can be classified according to their properties. Important factors are charge, hydrophilicity or hydrophobicity, size, and functional groups.[34] These properties influence protein structure and protein–protein interactions. The water-soluble proteins tend to have their hydrophobic residues (Leu, Ile, Val, Phe, and Trp) buried in the middle of the protein, whereas hydrophilic side chains are exposed to the aqueous solvent. (Note that in biochemistry, a residue refers to a specific monomer within the polymeric chain of a polysaccharide, protein or nucleic acid.) The integral membrane proteins tend to have outer rings of exposed hydrophobic amino acids that anchor them into the lipid bilayer. Some peripheral membrane proteins have a patch of hydrophobic amino acids on their surface that locks onto the membrane. In similar fashion, proteins that have to bind to positively charged molecules have surfaces rich with negatively charged amino acids like glutamate and aspartate, while proteins binding to negatively charged molecules have surfaces rich with positively charged chains like lysine and arginine. For example, lysine and arginine are highly enriched in low complexity regions of nucleic-acid binding proteins.[49] There are various hydrophobicity scales of amino acid residues.[119]

Some amino acids have special properties such as cysteine, that can form covalent disulfide bonds to other cysteine residues, proline that forms a cycle to the polypeptide backbone, and glycine that is more flexible than other amino acids.

Furthermore, glycine and proline are highly enriched within low complexity regions of eukaryotic and prokaryotic proteins, whereas the opposite (under-represented) has been observed for highly reactive, or complex, or hydrophobic amino acids, such as cysteine, phenylalanine, tryptophan, methionine, valine, leucine, isoleucine.[49][120][121]

Many proteins undergo a range of posttranslational modifications, whereby additional chemical groups are attached to the amino acid side chains. Some modifications can produce hydrophobic lipoproteins,[122] or hydrophilic glycoproteins.[123] These type of modification allow the reversible targeting of a protein to a membrane. For example, the addition and removal of the fatty acid palmitic acid to cysteine residues in some signaling proteins causes the proteins to attach and then detach from cell membranes.[124]

Table of standard amino acid abbreviations and properties

Main page: Chemistry:Proteinogenic amino acid
Amino acid Letter code Side chain Hydropathy
index[125]
Molar absorptivity[126] Molecular mass Abundance in proteins (%)[127] Standard genetic coding, IUPAC notation
3 1 Class Polarity[128] Charge, at pH 7.4[128] Wavelength, λmax (nm) Coefficient, ε (mM−1·cm−1)
Alanine Ala A Aliphatic Nonpolar Neutral 1.8 89.094 8.76 GCN
Arginine Arg R Basic Basic polar Positive −4.5 174.203 5.78 MGR, CGY (coding codons can also be expressed by: CGN, AGR)
Asparagine Asn N Amide Polar Neutral −3.5 132.119 3.93 AAY
Aspartic acid Asp D Acid Acidic polar Negative −3.5 133.104 5.49 GAY
Cysteine Cys C Sulfuric Nonpolar Neutral 2.5 250 0.3 121.154 1.38 UGY
Glutamine Gln Q Amide Polar Neutral −3.5 146.146 3.9 CAR
Glutamic acid Glu E Acid Acidic polar Negative −3.5 147.131 6.32 GAR
Glycine Gly G Aliphatic Nonpolar Neutral −0.4 75.067 7.03 GGN
Histidine His H Basic aromatic Basic polar Positive, 10%
Neutral, 90%
−3.2 211 5.9 155.156 2.26 CAY
Isoleucine Ile I Aliphatic Nonpolar Neutral 4.5 131.175 5.49 AUH
Leucine Leu L Aliphatic Nonpolar Neutral 3.8 131.175 9.68 YUR, CUY (coding codons can also be expressed by: CUN, UUR)
Lysine Lys K Basic Basic polar Positive −3.9 146.189 5.19 AAR
Methionine Met M Sulfuric Nonpolar Neutral 1.9 149.208 2.32 AUG
Phenylalanine Phe F Aromatic Nonpolar Neutral 2.8 257, 206, 188 0.2, 9.3, 60.0 165.192 3.87 UUY
Proline Pro P Cyclic Nonpolar Neutral −1.6 115.132 5.02 CCN
Serine Ser S Hydroxylic Polar Neutral −0.8 105.093 7.14 UCN, AGY
Threonine Thr T Hydroxylic Polar Neutral −0.7 119.119 5.53 ACN
Tryptophan Trp W Aromatic Nonpolar Neutral −0.9 280, 219 5.6, 47.0 204.228 1.25 UGG
Tyrosine Tyr Y Aromatic Polar Neutral −1.3 274, 222, 193 1.4, 8.0, 48.0 181.191 2.91 UAY
Valine Val V Aliphatic Nonpolar Neutral 4.2 117.148 6.73 GUN

Two additional amino acids are in some species coded for by codons that are usually interpreted as stop codons:

21st and 22nd amino acids 3-letter 1-letter Molecular mass
Selenocysteine Sec U 168.064
Pyrrolysine Pyl O 255.313

In addition to the specific amino acid codes, placeholders are used in cases where chemical or crystallographic analysis of a peptide or protein cannot conclusively determine the identity of a residue. They are also used to summarise conserved protein sequence motifs. The use of single letters to indicate sets of similar residues is similar to the use of abbreviation codes for degenerate bases.[129][130]

Ambiguous amino acids 3-letter 1-letter Amino acids included Codons included
Any / unknown Xaa X All NNN
Asparagine or aspartic acid Asx B D, N RAY
Glutamine or glutamic acid Glx Z E, Q SAR
Leucine or isoleucine Xle J I, L YTR, ATH, CTY (coding codons can also be expressed by: CTN, ATH, TTR; MTY, YTR, ATA; MTY, HTA, YTG)
Hydrophobic Φ V, I, L, F, W, Y, M NTN, TAY, TGG
Aromatic Ω F, W, Y, H YWY, TTY, TGG (coding codons can also be expressed by: TWY, CAY, TGG)
Aliphatic (non-aromatic) Ψ V, I, L, M VTN, TTR (coding codons can also be expressed by: NTR, VTY)
Small π P, G, A, S BCN, RGY, GGR
Hydrophilic ζ S, T, H, N, Q, E, D, K, R VAN, WCN, CGN, AGY (coding codons can also be expressed by: VAN, WCN, MGY, CGP)
Positively-charged + K, R, H ARR, CRY, CGR
Negatively-charged D, E GAN

Unk is sometimes used instead of Xaa, but is less standard.

In addition, many nonstandard amino acids have a specific code. For example, several peptide drugs, such as Bortezomib and MG132, are artificially synthesized and retain their protecting groups, which have specific codes. Bortezomib is Pyz–Phe–boroLeu, and MG132 is Z–Leu–Leu–Leu–al. To aid in the analysis of protein structure, photo-reactive amino acid analogs are available. These include photoleucine (pLeu) and photomethionine (pMet).[131]

Chemical analysis

The total nitrogen content of organic matter is mainly formed by the amino groups in proteins. The Total Kjeldahl Nitrogen (TKN) is a measure of nitrogen widely used in the analysis of (waste) water, soil, food, feed and organic matter in general. As the name suggests, the Kjeldahl method is applied. More sensitive methods are available.[132][133]

See also


Notes

  1. Proline is an exception to this general formula. It lacks the NH2 group because of the cyclization of the side chain and is known as an imino acid; it falls under the category of special structured amino acids.
  2. For example, ruminants such as cows obtain a number of amino acids via microbes in the first two stomach chambers.

References

  1. Nelson, David L.; Cox, Michael M. (2005), Principles of Biochemistry (4th ed.), New York: W. H. Freeman, ISBN 0-7167-4339-6 
  2. "New Naturally Occurring Amino Acids". Angewandte Chemie International Edition in English 22 (11): 816–828. November 1983. doi:10.1002/anie.198308161. closed access
  3. Latham, Michael C. (1997). "Chapter 8. Body composition, the functions of food, metabolism and energy". Human nutrition in the developing world. Food and Nutrition Series – No. 29. Rome: Food and Agriculture Organization of the United Nations. http://www.fao.org/docrep/W0073E/w0073e04.htm#P1625_217364. 
  4. Clark, Jim (August 2007). "An introduction to amino acids". http://www.chemguide.co.uk/organicprops/aminoacids/background.html. 
  5. Jakubke, Hans-Dieter; Sewald, Norbert (2008). "Amino acids". Peptides from A to Z: A Concise Encyclopedia. Germany: Wiley-VCH. p. 20. ISBN 9783527621170. https://books.google.com/books?id=doe9NwgJTAsC&pg=PA20. 
  6. Pollegioni, Loredano; Servi, Stefano, eds (2012). Unnatural Amino Acids: Methods and Protocols. Methods in Molecular Biology. 794. Humana Press. p. v. doi:10.1007/978-1-61779-331-8. ISBN 978-1-61779-331-8. OCLC 756512314. 
  7. "Biosynthesis and Charging of Pyrrolysine, the 22nd Genetically Encoded Amino Acid". Angewandte Chemie International Edition 50 (41): 9540–9541. October 2011. doi:10.1002/anie.201103769. PMID 21796749. closed access
  8. "Chapter 1: Proteins are the Body's Worker Molecules". National Institute of General Medical Sciences. 27 October 2011. http://publications.nigms.nih.gov/structlife/chapter1.html. 
  9. Michal, Gerhard, ed (2012). Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology (2nd ed.). Oxford: Wiley-Blackwell. p. 5. ISBN 978-0-470-14684-2. 
  10. 10.0 10.1 Tjong H (2008). Modeling Electrostatic Contributions to Protein Folding and Binding (PhD thesis). Florida State University. p. 1 footnote.
  11. 11.0 11.1 Stewart, L.; Burgin, A. B. (2005). "Whole Gene Synthesis: A Gene-O-Matic Future". Frontiers in Drug Design and Discovery (Bentham Science Publishers) 1: 299. doi:10.2174/1574088054583318. ISBN 978-1-60805-199-1. ISSN 1574-0889. https://books.google.com/books?id=VoJw6fIISSkC&pg=PA299. 
  12. 12.0 12.1 "The Genetic Codes". National Center for Biotechnology Information (NCBI). 7 April 2008. https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c. 
  13. 13.0 13.1 "Adding amino acids to the genetic repertoire". Current Opinion in Chemical Biology 9 (6): 548–554. December 2005. doi:10.1016/j.cbpa.2005.10.011. PMID 16260173. 
  14. 14.0 14.1 "Expanding the genetic code for biological studies". Chemistry & Biology 16 (3): 323–336. March 2009. doi:10.1016/j.chembiol.2009.03.001. PMID 19318213. 
  15. Emergent computation: emphasizing bioinformatics. New York: AIP Press/Springer Science+Business Media. 2005. pp. 105–106. ISBN 978-0-387-22046-8. https://archive.org/details/emergentcomputat00simo_754. 
  16. "GABA and glutamate in the human brain". The Neuroscientist 8 (6): 562–573. December 2002. doi:10.1177/1073858402238515. PMID 12467378. 
  17. "The history of the discovery of the amino acids". Chem. Rev. 9 (2): 169–318. 1931. doi:10.1021/cr60033a001. 
  18. Hansen, Sabine (May 2015). "Die Entdeckung der proteinogenen Aminosäuren von 1805 in Paris bis 1935 in Illinois" (in de). Berlin. https://www.arginium.de/wp-content/uploads/2015/12/Entdeckung-der-Aminos%C3%A4uren.pdf. 
  19. "The discovery of a new plant principle in Asparagus sativus". Annales de Chimie 57: 88–93. 1806. 
  20. 20.0 20.1 Advances in Protein Chemistry. New York: Academic Press. 1972. pp. 99, 103. ISBN 978-0-12-034226-6. https://archive.org/details/advancesinprotei26anfi/page/99. 
  21. "On cystic oxide, a new species of urinary calculus". Philosophical Transactions of the Royal Society 100: 223–230. 1810. doi:10.1098/rstl.1810.0015. 
  22. "Über cystin und cystein". Z Physiol Chem 8 (4): 299–305. 1884. http://vlp.mpiwg-berlin.mpg.de/library/data/lit16533. Retrieved 28 March 2011. 
  23. "Sur la conversion des matières animales en nouvelles substances par le moyen de l'acide sulfurique". Annales de Chimie et de Physique. 2nd Series 13: 113–125. 1820. 
  24. "The discovery of the amino acid threonine: the work of William C. Rose [classical article"]. The Journal of Biological Chemistry 277 (37): E25. September 2002. doi:10.1016/S0021-9258(20)74369-3. PMID 12218068. http://www.jbc.org/content/277/37/e25. 
  25. "Feeding Experiments with Mixtures of Highly Purified Amino Acids. VIII. Isolation and Identification of a New Essential Amino Acid". Journal of Biological Chemistry 112: 283–302. 1935. doi:10.1016/S0021-9258(18)74986-7. 
  26. Menten, P. Dictionnaire de chimie: Une approche étymologique et historique. De Boeck, Bruxelles. link.
  27. Harper, Douglas. "amino-". Online Etymology Dictionary. https://www.etymonline.com/word/amino-. 
  28. "Ueber die Einwirkung von Phenyl‐i‐cyanat auf organische Aminosäuren". Berichte der Deutschen Chemischen Gesellschaft 27: 974–979. 1894. doi:10.1002/cber.189402701205. https://zenodo.org/record/1425732. 
  29. Fruton, Joseph S. (1990). "Chapter 5- Emil Fischer and Franz Hofmeister". Contrasts in Scientific Style: Research Groups in the Chemical and Biochemical Sciences. 191. American Philosophical Society. pp. 163–165. ISBN 978-0-87169-191-0. 
  30. "Alpha amino acid". The Merriam-Webster.com Medical Dictionary. Merriam-Webster Inc.. http://www.merriam-webster.com/medical/alpha-amino%20acid. 
  31. Proline at the US National Library of Medicine Medical Subject Headings (MeSH)
  32. "Amino acids". Biochemistry 5753: Principles of Biochemistry. 2005. http://opbs.okstate.edu/5753/Amino%20Acids.html. 
  33. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "Imino acids". doi:10.1351/goldbook.I02959
  34. 34.0 34.1 34.2 34.3 34.4 34.5 Creighton, Thomas H. (1993). "Chapter 1". Proteins: structures and molecular properties. San Francisco: W. H. Freeman. ISBN 978-0-7167-7030-5. https://archive.org/details/proteinsstructur0000crei. 
  35. Hatem, Salama Mohamed Ali (2006). "Gas chromatographic determination of Amino Acid Enantiomers in tobacco and bottled wines". University of Giessen. http://geb.uni-giessen.de/geb/volltexte/2006/3038/index.html. 
  36. "Nomenclature and Symbolism for Amino Acids and Peptides". IUPAC-IUB Joint Commission on Biochemical Nomenclature. 1983. http://www.chem.qmul.ac.uk/iupac/AminoAcid/AA1n2.html. 
  37. "The Formol Titration of Certain Amino Acids". Journal of the American Chemical Society 48 (3): 751–753. 1 March 1926. doi:10.1021/ja01414a033. 
  38. Liebecq, Claude, ed (1992). Biochemical Nomenclature and Related Documents (2nd ed.). Portland Press. pp. 39–69. ISBN 978-1-85578-005-7. 
  39. Smith, Anthony D. (1997). Oxford Dictionary of Biochemistry and Molecular Biology. Oxford: Oxford University Press. p. 535. ISBN 978-0-19-854768-6. OCLC 37616711. 
  40. Simmons, William J.; Meisenberg, Gerhard (2006). Principles of medical biochemistry. Mosby Elsevier. p. 19. ISBN 978-0-323-02942-1. https://archive.org/details/principlesofmedi0000meis/page/19. 
  41. Food Chemistry 3rd Ed. CRC Press. 1996-06-19. pp. 327–328. ISBN 978-0-8247-9691-4. 
  42. "How ribosomes make peptide bonds". Trends in Biochemical Sciences 32 (1): 20–26. January 2007. doi:10.1016/j.tibs.2006.11.007. PMID 17157507. 
  43. "Mechanism and regulation of selenoprotein synthesis". Annual Review of Nutrition 23 (1): 17–40. 2003. doi:10.1146/annurev.nutr.23.011702.073318. PMID 12524431. 
  44. "The direct genetic encoding of pyrrolysine". Current Opinion in Microbiology 8 (6): 706–712. December 2005. doi:10.1016/j.mib.2005.10.009. PMID 16256420. 
  45. "Evidence for the existence in mRNAs of a hairpin element responsible for ribosome dependent pyrrolysine insertion into proteins". Biochimie 87 (9–10): 813–817. 2005. doi:10.1016/j.biochi.2005.03.006. PMID 16164991. 
  46. "Consensus temporal order of amino acids and evolution of the triplet code". Gene 261 (1): 139–151. December 2000. doi:10.1016/S0378-1119(00)00476-5. PMID 11164045. 
  47. "A thermodynamic basis for prebiotic amino acid synthesis and the nature of the first genetic code". Astrobiology 9 (5): 483–90. June 2009. doi:10.1089/ast.2008.0280. PMID 19566427. Bibcode2009AsBio...9..483H. 
  48. "The complex evolutionary history of aminoacyl-tRNA synthetases". Nucleic Acids Research 45 (3): 1059–1068. February 2017. doi:10.1093/nar/gkw1182. PMID 28180287. 
  49. 49.0 49.1 49.2 "Low complexity regions in the proteins of prokaryotes perform important functional roles and are highly conserved". Nucleic Acids Research 47 (19): 9998–10009. November 2019. doi:10.1093/nar/gkz730. PMID 31504783. 
  50. "Gamma-carboxyglutamate-containing proteins and the vitamin K-dependent carboxylase". The Biochemical Journal 266 (3): 625–636. March 1990. doi:10.1042/bj2660625. PMID 2183788. 
  51. "Collagen structure: the Madras triple helix and the current scenario". IUBMB Life 57 (3): 161–172. March 2005. doi:10.1080/15216540500090710. PMID 16036578. 
  52. "The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A)". Journal of Biochemistry 139 (2): 161–169. February 2006. doi:10.1093/jb/mvj034. PMID 16452303. 
  53. "Subcellular localization specified by protein acylation and phosphorylation". Current Opinion in Cell Biology 5 (6): 984–989. December 1993. doi:10.1016/0955-0674(93)90081-Z. PMID 8129952. 
  54. "Almost all about citrulline in mammals". Amino Acids 29 (3): 177–205. November 2005. doi:10.1007/s00726-005-0235-4. PMID 16082501. 
  55. "Pantothenate biosynthesis in higher plants". Biochemical Society Transactions 33 (Pt 4): 743–746. August 2005. doi:10.1042/BST0330743. PMID 16042590. 
  56. "Characterization of mammalian selenoproteomes". Science 300 (5624): 1439–1443. May 2003. doi:10.1126/science.1083516. PMID 12775843. Bibcode2003Sci...300.1439K. http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1072&context=biochemgladyshev. 
  57. "The thioredoxin system—from science to clinic". Medicinal Research Reviews 24 (1): 40–89. January 2004. doi:10.1002/med.10051. PMID 14595672. 
  58. "Amino acid metabolism". Annual Review of Biochemistry 32 (1): 355–398. 1963. doi:10.1146/annurev.bi.32.070163.002035. PMID 14144484. 
  59. "Glutamate, at the interface between amino acid and carbohydrate metabolism". The Journal of Nutrition 130 (4S Suppl): 988S–990S. April 2000. doi:10.1093/jn/130.4.988S. PMID 10736367. 
  60. "Glutamine: the emperor or his clothes?". The Journal of Nutrition 131 (9 Suppl): 2449S–2459S, 2486S–2487S. September 2001. doi:10.1093/jn/131.9.2449S. PMID 11533293. 
  61. "Adult amino acid requirements: the case for a major revision in current recommendations". The Journal of Nutrition 124 (8 Suppl): 1517S–1523S. August 1994. doi:10.1093/jn/124.suppl_8.1517S. PMID 8064412. 
  62. "What are the essential elements needed for the determination of amino acid requirements in humans?". The Journal of Nutrition 134 (6 Suppl): 1558S–1565S. June 2004. doi:10.1093/jn/134.6.1558S. PMID 15173430. 
  63. "Dispensable and indispensable amino acids for humans". The Journal of Nutrition 130 (7): 1835S–1840S. July 2000. doi:10.1093/jn/130.7.1835S. PMID 10867060. 
  64. "Amino acid metabolism in pediatric patients". Nutrition 14 (1): 143–148. January 1998. doi:10.1016/S0899-9007(97)00230-X. PMID 9437700. 
  65. "Taurine: a conditionally essential amino acid in humans? An overview in health and disease". Nutricion Hospitalaria 17 (6): 262–270. 2002. PMID 12514918. 
  66. "The emerging science of BMAA: do cyanobacteria contribute to neurodegenerative disease?". Environmental Health Perspectives 120 (3): A110–A116. March 2012. doi:10.1289/ehp.120-a110. PMID 22382274. 
  67. "Dietary exposure to an environmental toxin triggers neurofibrillary tangles and amyloid deposits in the brain". Proceedings: Biological Sciences 283 (1823): 20152397. January 2016. doi:10.1098/rspb.2015.2397. PMID 26791617. 
  68. 68.0 68.1 "Skeletal muscle homeostasis and plasticity in youth and ageing: impact of nutrition and exercise". Acta Physiologica 216 (1): 15–41. January 2016. doi:10.1111/apha.12532. PMID 26010896. 
  69. "The neurology of mTOR". Neuron 84 (2): 275–291. October 2014. doi:10.1016/j.neuron.2014.09.034. PMID 25374355. 
    Figure 2: The mTOR Signaling Pathway
  70. 70.0 70.1 "A brief review of critical processes in exercise-induced muscular hypertrophy". Sports Medicine 44 (Suppl. 1): S71–S77. May 2014. doi:10.1007/s40279-014-0152-3. PMID 24791918. 
  71. "A renaissance in trace amines inspired by a novel GPCR family". Trends Pharmacol. Sci. 26 (5): 274–281. May 2005. doi:10.1016/j.tips.2005.03.007. PMID 15860375. 
  72. "The endogenous substrates of brain CYP2D". Eur. J. Pharmacol. 724: 211–218. February 2014. doi:10.1016/j.ejphar.2013.12.025. PMID 24374199. 
  73. "Genetic disruption of both tryptophan hydroxylase genes dramatically reduces serotonin and affects behavior in models sensitive to antidepressants". PLOS ONE 3 (10): e3301. 2008. doi:10.1371/journal.pone.0003301. PMID 18923670. Bibcode2008PLoSO...3.3301S. 
  74. "The biological utilization of glycine for the synthesis of the protoporphyrin of hemoglobin". The Journal of Biological Chemistry 166 (2): 621–625. December 1946. doi:10.1016/S0021-9258(17)35200-6. PMID 20276176. http://www.jbc.org/cgi/reprint/166/2/621. 
  75. "Stabilization and characterization of a heme-oxy reaction intermediate in inducible nitric-oxide synthase". The Journal of Biological Chemistry 283 (48): 33498–33507. November 2008. doi:10.1074/jbc.M806122200. PMID 18815130. 
  76. "Mathematical modeling of polyamine metabolism in mammals". The Journal of Biological Chemistry 281 (31): 21799–21812. August 2006. doi:10.1074/jbc.M602756200. PMID 16709566. 
  77. 77.0 77.1 Stryer, Lubert; Berg, Jeremy M.; Tymoczko, John L. (2002). Biochemistry (5th ed.). New York: W.H. Freeman. pp. 693–698. ISBN 978-0-7167-4684-3. https://archive.org/details/biochemistry200100jere. 
  78. Hylin, John W. (1969). "Toxic peptides and amino acids in foods and feeds". Journal of Agricultural and Food Chemistry 17 (3): 492–496. doi:10.1021/jf60163a003. 
  79. "Distribution of canavanine in the plant kingdom". Phytochemistry 6 (6): 863–866. 1967. doi:10.1016/S0031-9422(00)86033-1. 
  80. "Canavanine content in sword beans (Canavalia gladiata): analysis and effect of processing". Food and Chemical Toxicology 45 (5): 797–803. May 2007. doi:10.1016/j.fct.2006.10.030. PMID 17187914. 
  81. "L-Canavanine: a higher plant insecticidal allelochemical". Amino Acids 21 (3): 319–330. 2001. doi:10.1007/s007260170017. PMID 11764412. 
  82. "Leucaena toxicosis and its control in ruminants". Journal of Animal Science 73 (5): 1487–1492. May 1995. doi:10.2527/1995.7351487x. PMID 7665380. http://jas.fass.org/cgi/pmidlookup?view=long&pmid=7665380. 
  83. 83.0 83.1 "Biotechnological production of amino acids and derivatives: current status and prospects". Applied Microbiology and Biotechnology 69 (1): 1–8. November 2005. doi:10.1007/s00253-005-0155-y. PMID 16195792. 
  84. Ashmead, H. DeWayne (1993). The Role of Amino Acid Chelates in Animal Nutrition. Westwood: Noyes Publications. 
  85. "Glutamic acid, twenty years later". The Journal of Nutrition 130 (4S Suppl): 901S–909S. April 2000. doi:10.1093/jn/130.4.901S. PMID 10736350. 
  86. "The aspartame story: a model for the clinical testing of a food additive". The American Journal of Clinical Nutrition 46 (1 Suppl): 204–215. July 1987. doi:10.1093/ajcn/46.1.204. PMID 3300262. 
  87. Albion Laboratories, Inc.. "Albion Ferrochel Website". http://www.albionferrochel.com. 
  88. Ashmead, H. DeWayne (1986). Foliar Feeding of Plants with Amino Acid Chelates. Park Ridge: Noyes Publications. 
  89. "Serotonin a la carte: supplementation with the serotonin precursor 5-hydroxytryptophan". Pharmacology & Therapeutics 109 (3): 325–338. March 2006. doi:10.1016/j.pharmthera.2005.06.004. PMID 16023217. https://escholarship.org/uc/item/58h866d5. 
  90. "Peculiarities of L-DOPA treatment of Parkinson's disease". Amino Acids 28 (2): 157–164. March 2005. doi:10.1007/s00726-005-0162-4. PMID 15750845. 
  91. "Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas' disease, and leishmaniasis". Amino Acids 33 (2): 359–366. August 2007. doi:10.1007/s00726-007-0537-9. PMID 17610127. 
  92. "Ribosome stalling and peptidyl-tRNA drop-off during translational delay at AGA codons". Nucleic Acids Research 32 (15): 4462–4468. 2004. doi:10.1093/nar/gkh784. PMID 15317870. 
  93. Andy, Coghlan (October 2012). "Molecules 'too dangerous for nature' kill cancer cells". New Scientist. https://www.newscientist.com/article/dn22424-molecules-too-dangerous-for-nature-kill-cancer-cells.html. 
  94. "Lethal DNA tags could keep innocent people out of jail". New Scientist. 2 May 2013. https://www.newscientist.com/article/mg21829155.900-lethal-dna-tags-could-keep-innocent-people-out-of-jail.html. 
  95. "Reflections on the total synthesis of natural products: Art, craft, logic, and the chiron approach". Pure and Applied Chemistry 65 (6): 1189–1204. 1993. doi:10.1351/pac199365061189. 
  96. Blaser, Hans Ulrich (1992). "The chiral pool as a source of enantioselective catalysts and auxiliaries". Chemical Reviews 92 (5): 935–952. doi:10.1021/cr00013a009. 
  97. "Syntheses and functions of polymers based on amino acids". Macromolecular Chemistry and Physics 200 (12): 2651–2661. 1999. doi:10.1002/(SICI)1521-3935(19991201)200:12<2651::AID-MACP2651>3.0.CO;2-P. 
  98. "Biodegradable polymers for the environment". Science 297 (5582): 803–807. August 2002. doi:10.1126/science.297.5582.803. PMID 12161646. Bibcode2002Sci...297..803G. https://zenodo.org/record/1231185. 
  99. Commercial poly(aspartic acid) and Its Uses. Advances in Chemistry Series. 248. Washington, D.C.: American Chemical Society. 1996. 
  100. "Synthesis and Biodegradability of Polyaspartic Acid: A Critical Review". Journal of Macromolecular Science, Part A 42 (9): 1299–1315. 2005. doi:10.1080/10601320500189604. 
  101. "Polymers derived from the amino acid L-tyrosine: polycarbonates, polyarylates and copolymers with poly(ethylene glycol)". Advanced Drug Delivery Reviews 55 (4): 447–466. April 2003. doi:10.1016/S0169-409X(03)00038-3. PMID 12706045. 
  102. Drauz, Karlheinz; Grayson, Ian; Kleemann, Axel; Krimmer, Hans-Peter; Leuchtenberger, Wolfgang; Weckbecker, Christoph (2006). "Ullmann's Encyclopedia of Industrial Chemistry". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a02_057.pub2. 
  103. Jones, Russell Celyn; Buchanan, Bob B.; Gruissem, Wilhelm (2000). Biochemistry & molecular biology of plants. Rockville, Md: American Society of Plant Physiologists. pp. 371–372. ISBN 978-0-943088-39-6. https://archive.org/details/biochemistrymole00buch/page/371. 
  104. "The sulfur-containing amino acids: an overview". The Journal of Nutrition 136 (6 Suppl): 1636S–1640S. June 2006. doi:10.1093/jn/136.6.1636S. PMID 16702333. 
  105. "Collagen hydroxylases and the protein disulfide isomerase subunit of prolyl 4-hydroxylases". Advances in Enzymology and Related Areas of Molecular Biology. Advances in Enzymology – and Related Areas of Molecular Biology. 72. 1998. pp. 325–398. doi:10.1002/9780470123188.ch9. ISBN 9780470123188. 
  106. "Analysis of peptaibol sequence composition: implications for in vivo synthesis and channel formation". European Biophysics Journal 33 (3): 233–237. May 2004. doi:10.1007/s00249-003-0348-1. PMID 14534753. 
  107. "Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening". Journal of Experimental Botany 53 (377): 2039–2055. October 2002. doi:10.1093/jxb/erf072. PMID 12324528. 
  108. Amino acids and peptides. Cambridge, UK: Cambridge University Press. 1998. pp. 48–60. ISBN 978-0-521-46827-5. https://archive.org/details/aminoacidspeptid00barr_040. 
  109. "Understanding nature's catalytic toolkit". Trends in Biochemical Sciences 30 (11): 622–629. November 2005. doi:10.1016/j.tibs.2005.09.006. PMID 16214343. 
  110. "The renaissance of aminoacyl-tRNA synthesis". EMBO Reports 2 (5): 382–387. May 2001. doi:10.1093/embo-reports/kve095. PMID 11375928. 
  111. "Mechanism of protein biosynthesis". Bacteriological Reviews 33 (2): 264–301. June 1969. doi:10.1128/MMBR.33.2.264-301.1969. PMID 4896351. 
  112. "Glutathione metabolism and its implications for health". The Journal of Nutrition 134 (3): 489–492. March 2004. doi:10.1093/jn/134.3.489. PMID 14988435. 
  113. "Glutathione metabolism and its selective modification". The Journal of Biological Chemistry 263 (33): 17205–17208. November 1988. doi:10.1016/S0021-9258(19)77815-6. PMID 3053703. http://www.jbc.org/cgi/pmidlookup?view=long&pmid=3053703. 
  114. Carpino, Louis A. (1992). "1-Hydroxy-7-azabenzotriazole. An efficient peptide coupling additive". Journal of the American Chemical Society 115 (10): 4397–4398. doi:10.1021/ja00063a082. 
  115. "Past and future perspectives of synthetic peptide libraries". Current Protein & Peptide Science 9 (5): 447–467. October 2008. doi:10.2174/138920308785915209. PMID 18855697. 
  116. "Structural determination and characterization of copper and zinc bis-glycinates with X-ray crystallography and mass spectrometry". Journal of Coordination Chemistry 63 (19): 3335–3347. 2010. doi:10.1080/00958972.2010.514336. 
  117. Biochemical, physiological, & molecular aspects of human nutrition (2nd ed.). Saunders Elsevier. 2006. 
  118. "The Use of Carbon Monoxide and Imines as Peptide Derivative Synthons: A Facile Palladium-Catalyzed Synthesis of α-Amino Acid Derived Imidazolines". Angewandte Chemie 40 (17): 3228–3230. September 2001. doi:10.1002/(SICI)1521-3773(19980703)37:12<1634::AID-ANIE1634>3.0.CO;2-C. PMID 29712039. 
  119. "The change in Gibbs free energy for hydrophobic association: Derivation and evaluation by means of inverse temperature transitions". Chemical Physics Letters 399 (1–3): 177–183. 2004. doi:10.1016/S0009-2614(04)01565-9. Bibcode2004CPL...399..177U. 
  120. "A census of protein repeats". Journal of Molecular Biology 293 (1): 151–60. October 1999. doi:10.1006/jmbi.1999.3136. PMID 10512723. 
  121. "Low-complexity sequences and single amino acid repeats: not just "junk" peptide sequences". Genome 53 (10): 753–62. October 2010. doi:10.1139/G10-063. PMID 20962881. 
  122. "Fatty acylation and prenylation of proteins: what's hot in fat". Current Opinion in Cell Biology 17 (2): 190–196. April 2005. doi:10.1016/j.ceb.2005.02.003. PMID 15780596. 
  123. "Deciphering the glycocode: the complexity and analytical challenge of glycomics". Current Opinion in Chemical Biology 11 (3): 300–305. June 2007. doi:10.1016/j.cbpa.2007.05.002. PMID 17500024. 
  124. "Palmitoylation of intracellular signaling proteins: regulation and function". Annual Review of Biochemistry 73 (1): 559–587. 2004. doi:10.1146/annurev.biochem.73.011303.073954. PMID 15189153. 
  125. "A simple method for displaying the hydropathic character of a protein". Journal of Molecular Biology 157 (1): 105–132. May 1982. doi:10.1016/0022-2836(82)90515-0. PMID 7108955. 
  126. Physical Biochemistry (2nd ed.). W. H. Freeman and Company. 1983. ISBN 978-0-7167-1315-9. 
  127. "Proteome-pI: proteome isoelectric point database". Nucleic Acids Research 45 (D1): D1112–D1116. January 2017. doi:10.1093/nar/gkw978. PMID 27789699. 
  128. 128.0 128.1 Hausman, Robert E.; Cooper, Geoffrey M. (2004). The cell: a molecular approach. Washington, D.C: ASM Press. p. 51. ISBN 978-0-87893-214-6. 
  129. "Normalization of nomenclature for peptide motifs as ligands of modular protein domains". FEBS Letters 513 (1): 141–144. February 2002. doi:10.1111/j.1432-1033.1968.tb00350.x. PMID 11911894. 
  130. IUPAC–IUB Commission on Biochemical Nomenclature (1972). "A one-letter notation for amino acid sequences". Pure and Applied Chemistry 31 (4): 641–645. doi:10.1351/pac197231040639. PMID 5080161. 
  131. "Photo-leucine and photo-methionine allow identification of protein–protein interactions in living cells". Nature Methods 2 (4): 261–267. April 2005. doi:10.1038/nmeth752. PMID 15782218. 
  132. "A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances". Sensors (Basel, Switzerland) 13 (8): 10823–43. August 2013. doi:10.3390/s130810823. PMID 23959242. Bibcode2013Senso..1310823M. 
  133. "Determination of soil organic carbon and nitrogen at thefield level using near-infrared spectroscopy". Canadian Journal of Soil Science 82 (4): 413–422. 2002. doi:10.4141/S01-054. 

Further reading

External links