Biology:Delftia acidovorans

From HandWiki
Revision as of 01:04, 10 February 2024 by LinXED (talk | contribs) (add)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Species of bacterium

Delftia acidovorans
Scientific classification edit
Domain: Bacteria
Phylum: Pseudomonadota
Class: Betaproteobacteria
Order: Burkholderiales
Family: Comamonadaceae
Genus: Delftia
Species:
D. acidovorans
Binomial name
Delftia acidovorans
(den Dooren de Jong 1926)
Wen et al. 1999
Type strain
ATCC 15668T
Synonyms

Comamonas acidovorans (den Dooren de Jong 1926) Tamaoka et al. 1987
Pseudomonas indoloxidans Gray 1928
Pseudomonas desmolytica Gray and Thornton 1928
Pseudomonas acidovorans den Dooren de Jong 1926

Delftia acidovorans is a Gram-negative, motile, non-sporulating, rod-shaped bacterium[1] known for its ability to biomineralize gold[2] and bioremediation characteristics.[3] It was first isolated from soil in Delft, Netherlands.[1] The bacterium was originally categorized as Pseudomonas acidovorans and Comamonas acidovorans before being reclassified as Delftia acidovorans.[4]

History

Delftia acidovorans was originally known as Comamonas acidovorans.[1] It was renamed due to rRNA relatedness[5] and differences from other microbes within the Comamonadaceae family.[1] These differences are evidenced by phylogenetic and phenotypic data.[1] The new name, Delftia acidovorans, is a reference to the city of Delft, where it was first discovered and recorded.[1]

Biology and biochemistry

Type and morphology

Delftia acidovorans is a saphrophyte,[6] Gram-negative, non-sporulating, non-denitrifying, non-fermentative rod shaped bacterium.[1] D. acidovorans exists as a single cell or in pairs that are 0.4-0.8 ųM wide and 2.5-4.1 ųM long.[1] D. acidovorans is motile through polar or bipolar tufts of flagella.[1] Tufts can have one to five flagella.[1]

Strains and phylogeny

Delftia acidovorans exists as part of the Betaproteobacteria lineage within the Comamonadaceae family. D. acidovorans strains SPH1, ATCC 1 15668, and Cs 1-4 are closely related. While strains CCUG 247B and CCUG 15835 belong to Delftia acidovorans, they are more similar to Delftia tsuruhatensis. CCUG 247B and CCUG 15835 are often grouped with D. tsuruhatensis rather than D. acidovorans.[7]

Metabolism

Delftia acidovorans is mesophilic and its optimal growing temperature is 30 °C.[7] It will not survive in psychrophilic conditions.[1] D. acidovorans is a non-halophile that prefers environments with minimal to no salt concentrations for growth.[1] D. acidovorans strains Cs1-4 and SPH-1 are aerobic bacteria.[7]

Delftia acidovorans strains Cs1-4 and SPH-1 can use phenanthrene, pyruvate, vanillate, succinate, formic acid, gluconic acid, hydroxybutyric acid, lactic acid, and propionic acid as carbon sources.[7] D. acidovorans does not produce urease, is catalase and oxidase positive, and oxidizes fructose and mannitol.[5]

Biomineralization

Delftia acidovorans is one of the few bacteria, along with Cupriavidus metallidurans, that can metabolize gold.[8][2] Au3+ is reduced extracellularly by the non-ribosomal secondary metabolite delftibactin. Delftibactin is a unique metabolite, as it can protect the bacteria from gold toxicity as well as reduce gold ions to solid form.[2] Delftibactin can remove gold from sludges containing seawater and calcium carbonate, and is also capable of retrieving gold from electronic waste.[9][10] Biohydrometallurgy techniques using D. acidovorans improve recycling profitability and are sustainable alternatives to cyanide leaching.[11] Lead can also be recovered from discarded electronics with D. acidovorans.[3] Attempts to induce delftibactin expression in Escherichia coli were unsuccessful due to the toxicity of the DelH protein.[10]

Bioremediation and biomanufacturing

Delftia acidovorans is capable of converting toxic metals including selenium and chromium ions into harmless products.[3] It can also degrade phenanthrene, which is a carbon source from polycylic aromatic hydrocarbons. Phenanthrene is a common environmental pollutant.[7]

D. acidovorans can be used to manufacture polyhydroxyalkanoates (PHAs), a favorable alternative towards traditional plastic equipment used in medical settings. Traditional plastic manufacturing is resource-consuming and polluting, while PHA production through D. acidovorans is a more sustainable solution.[12]

Role in disease

D. acidovorans is an emergent opportunistic pathogen that demonstrates antibiotic resistance.[6][13] The infection can cause bacteremia,[14] keratitis,[15][16] pneumonia,[17] empyema,[18] otitis,[19] and peritonitis.[20] Known sources of infection include contaminated water[19] and catheters.[13][14] D. acidovorans should be considered a causative organism in patients when water or soil contamination is suspected.[5] D. acidovorans has been isolated from clinical settings as well, such as RO systems,[21] surgical vacuums,[22] and operating bay sinks.[23] Some strains can tolerate chlorhexidine,[24] a common surgical disinfectant.

Infections of D. acidovorans can be confirmed through an orange indole test.[18] Antibiotic resistance to aminoglycosides is common. [6][13][18][17][20]

References

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 Wen, Aimin; Fegan, Mark; Hayward, Chris; Chakraborty, Sukumar; Sly, Lindsay (1999). "Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tarnoaka et al. 1987) gen. nov., comb. nov.". International Journal of Systematic Bacteriology 49 (2): 567–576. doi:10.1099/00207713-49-2-567. PMID 10319477. 
  2. 2.0 2.1 2.2 Johnston, Chad W.; Wyatt, Morgan A.; Li, Xiang; Ibrahim, Ashraf; Shuster, Jeremiah; Southam, Gordon; Magarvey, Nathan A. (2013). "Gold biomineralization by a metallophore from a gold-associated microbe" (in en). Nature Chemical Biology 9 (4): 241–243. doi:10.1038/nchembio.1179. ISSN 1552-4469. PMID 23377039. https://www.nature.com/articles/nchembio.1179. 
  3. 3.0 3.1 3.2 Ubalde, Martha C.; Braña, Victoria; Sueiro, Fabiana; Morel, María A.; Martínez-Rosales, Cecilia; Marquez, Carolina; Castro-Sowinski, Susana (2012). "The Versatility of Delftia sp. Isolates as Tools for Bioremediation and Biofertilization Technologies" (in en). Current Microbiology 64 (6): 597–603. doi:10.1007/s00284-012-0108-5. ISSN 0343-8651. PMID 22476956. http://link.springer.com/10.1007/s00284-012-0108-5. 
  4. Rema, Tara; Lawrence, John R.; Dynes, James J.; Hitchcock, Adam P.; Korber, Darren R. (2014-10-01). "Microscopic and Spectroscopic Analyses of Chlorhexidine Tolerance in Delftia acidovorans Biofilms" (in en). Antimicrobial Agents and Chemotherapy 58 (10): 5673–5686. doi:10.1128/AAC.02984-14. ISSN 0066-4804. PMID 25022584. 
  5. 5.0 5.1 5.2 Mahmood, S.; Taylor, K. E.; Overman, T. L.; McCormick, M. I. (2012-11-01). "Acute Infective Endocarditis Caused by Delftia acidovorans, a Rare Pathogen Complicating Intravenous Drug Use" (in en). Journal of Clinical Microbiology 50 (11): 3799–3800. doi:10.1128/JCM.00553-12. ISSN 0095-1137. PMID 22933597. 
  6. 6.0 6.1 6.2 Kawamura, Ichiro; Yagi, Tetsuya; Hatakeyama, Kazuhito; Hasegawa, Yoshinori; Ohkura, Teruko; Ohkusu, Kiyofumi; Takahashi, Yoshiyuki; Kojima, Seiji (2011). "Recurrent vascular catheter-related bacteremia caused by Delftia acidovorans with different antimicrobial susceptibility profiles" (in en). Journal of Infection and Chemotherapy 17 (1): 111–113. doi:10.1007/s10156-010-0089-x. PMID 20628778. https://linkinghub.elsevier.com/retrieve/pii/S1341321X11705529. 
  7. 7.0 7.1 7.2 7.3 7.4 Shetty, Ameesha R.; de Gannes, Vidya; Obi, Chioma C.; Lucas, Susan; Lapidus, Alla; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Samuel et al. (2015). "Complete genome sequence of the phenanthrene-degrading soil bacterium Delftia acidovorans Cs1-4". Standards in Genomic Sciences 10: 55. doi:10.1186/s40793-015-0041-x. ISSN 1944-3277. PMID 26380642. 
  8. Rea, Maria Angelica; Zammit, Carla M.; Reith, Frank (2016-06-01). "Bacterial biofilms on gold grains—implications for geomicrobial transformations of gold" (in en). FEMS Microbiology Ecology 92 (6): fiw082. doi:10.1093/femsec/fiw082. ISSN 0168-6496. PMID 27098381. https://academic.oup.com/femsec/article/92/6/fiw082/2577883. 
  9. Yusoff, A H M; Nading, M E; Salimi, M N (2017). "Extraction of gold (Au) particles from sea water by Delftia Acidovorans microbes". Journal of Physics: Conference Series 908 (1): 012045. doi:10.1088/1742-6596/908/1/012045. ISSN 1742-6588. Bibcode2017JPhCS.908a2045Y. 
  10. 10.0 10.1 "Gold Recycling. Using Delfibactin to Recycle Gold from Electronic Waste.". http://2013.igem.org/Team:Heidelberg/Project/Delftibactin#:~:text=This%20fascinating%20molecule%20is%20called,gold%20ions%20in%20contaminated%20soil.. 
  11. Kaksonen, Anna H.; Boxall, Naomi J.; Gumulya, Yosephine; Khaleque, Himel N.; Morris, Christina; Bohu, Tsing; Cheng, Ka Yu; Usher, Kayley M. et al. (2018-09-01). "Recent progress in biohydrometallurgy and microbial characterisation" (in en). Hydrometallurgy 180: 7–25. doi:10.1016/j.hydromet.2018.06.018. ISSN 0304-386X. Bibcode2018HydMe.180....7K. http://www.sciencedirect.com/science/article/pii/S0304386X18301804. 
  12. Romanelli, Maria Giovanna; Povolo, Silvana; Favaro, Lorenzo; Fontana, Federico; Basaglia, Marina; Casella, Sergio (2014). "Engineering Delftia acidovorans DSM39 to produce polyhydroxyalkanoates from slaughterhouse waste". International Journal of Biological Macromolecules 71: 21–27. doi:10.1016/j.ijbiomac.2014.03.049. PMID 24704165. https://www.sciencedirect.com/science/article/abs/pii/S0141813014002219. 
  13. 13.0 13.1 13.2 Chotikanatis, Kobkul; Bäcker, Martin; Rosas-Garcia, Gabriela; Hammerschlag, Margaret R. (2011). "Recurrent Intravascular-Catheter-Related Bacteremia Caused by Delftia acidovorans in a Hemodialysis Patient" (in en). Journal of Clinical Microbiology 49 (9): 3418–3421. doi:10.1128/JCM.00625-11. ISSN 0095-1137. PMID 21775546. 
  14. 14.0 14.1 Lang, K. J.; Chinzowu, T.; Cann, K. J. (2012). "Delftia acidovorans as an Unusual Causative Organism in Line-Related Sepsis" (in en). Indian Journal of Microbiology 52 (1): 102–103. doi:10.1007/s12088-011-0221-3. ISSN 0046-8991. PMID 23450157. 
  15. Lee, Sang Mok; Kim, Mee Kum; Lee, Jae Lim; Wee, Won Ryang; Lee, Jin Hak (2008). "Experience of Comamonas Acidovorans Keratitis with Delayed Onset and Treatment Response in Immunocompromised Cornea". Korean Journal of Ophthalmology 22 (1): 49–52. doi:10.3341/kjo.2008.22.1.49. ISSN 1011-8942. PMID 18323706. 
  16. Langman, ME; Dighiero, PL; Gicquel, JJ (2007-10-02). "Comamonas: a not so comon agent in hydrogel contact lens wearers" (in en). Acta Ophthalmologica Scandinavica 85: 0. doi:10.1111/j.1600-0420.2007.01062_3296.x. http://doi.wiley.com/10.1111/j.1600-0420.2007.01062_3296.x. 
  17. 17.0 17.1 Yildiz, Hanifi; Sünnetçioğlu, Aysel; Ekin, Selami; Baran, İrfan; Özgökçe, Mesut; Aşker, Selvi; Üney, İbrahim; Akyüz, Sümeyye (2020-02-10). Turgut, Engin. ed. "Delftia Acidovorans pneumonia with lung cavities formation". Colombia Medica 50 (3): 215–221. doi:10.25100/cm.v50i3.4025. PMID 32284666. PMC 7141147. http://colombiamedica.univalle.edu.co/index.php/comedica/article/view/4025. 
  18. 18.0 18.1 18.2 Khan, Sadia; Sistla, Sujatha; Dhodapkar, Rahul; Parija, Subhash Chandra (2012). "Fatal Delftia acidovorans infection in an immunocompetent patient with empyema" (in en). Asian Pacific Journal of Tropical Biomedicine 2 (11): 923–924. doi:10.1016/S2221-1691(12)60254-8. PMID 23569872. 
  19. 19.0 19.1 Reina, Jordi; Llompart, Isabel; Alomar, Pedro (March 1991). "Acute suppurative otitis caused by Comamonas acidovorans" (in en). Clinical Microbiology Newsletter 13 (5): 38–39. doi:10.1016/0196-4399(91)90006-H. https://linkinghub.elsevier.com/retrieve/pii/019643999190006H. 
  20. 20.0 20.1 Artan, Ayse Serra; Gursu, Meltem; Elcioglu, Omer Celal; Kazancioglu, Rumeyza (2020). "Delftia Acidovorans Peritonitis in a Patient Undergoing Peritoneal Dialysis". Turkish Journal of Nephrology 29 (4): 326–328. doi:10.5152/turkjnephrol.2020.4204. 
  21. Yassin, Mohamed H.; Abramovitz, Blaise; Hariri, Rahman; McKibben, Leeanna; Pinevich, A.J. (2020). "Delftia acidovorans pseudo outbreak in portable reverse osmosis machines: Interventions to ensure safe and cost-effective hemodialysis". American Journal of Infection Control 48 (3): 304–308. doi:10.1016/j.ajic.2019.11.027. ISSN 0196-6553. PMID 31952870. https://doi.org/10.1016/j.ajic.2019.11.027. 
  22. Miño de Kaspar, Herminia; Grasbon, Thomas; Kampik, Anselm (2000). "Automated surgical equipment requires routine disinfection of vacuum control manifold to prevent postoperative endophthalmitis". Ophthalmology 107 (4): 685–690. doi:10.1016/s0161-6420(99)00178-5. ISSN 0161-6420. PMID 10768329. https://doi.org/10.1016/S0161-6420(99)00178-5. 
  23. Ta, C.; Wong, G.; Cole, W.; Medvedev, G. (2020-09-01). "Scrub sink contamination and transmission to operating room personnel" (in en). New Microbes and New Infections 37: 100754. doi:10.1016/j.nmni.2020.100754. ISSN 2052-2975. PMID 32995014. 
  24. Rema, Tara; Lawrence, John R.; Dynes, James J.; Hitchcock, Adam P.; Korber, Darren R. (2014). "Microscopic and Spectroscopic Analyses of Chlorhexidine Tolerance in Delftia acidovorans Biofilms" (in en). Antimicrobial Agents and Chemotherapy 58 (10): 5673–5686. doi:10.1128/AAC.02984-14. ISSN 0066-4804. PMID 25022584. 

External links

Wikidata ☰ Q4167431 entry