Chemistry:Phenanthrene

From HandWiki
Short description: Polycyclic aromatic hydrocarbon composed of three fused benzene rings
Phenanthrene
Phenanthrene-numbering.svg
Ball-and-stick model of the phenanthrene molecule
Phenanthrene
Names
Preferred IUPAC name
Phenanthrene
Identifiers
3D model (JSmol)
1905428
ChEBI
ChemSpider
EC Number
  • 266-028-2
28699
KEGG
MeSH C031181
UNII
Properties
C14H10
Molar mass 178.234 g·mol−1
Appearance Colorless solid
Density 1.18 g/cm3[1]
Melting point 101 °C (214 °F; 374 K)[1]
Boiling point 332 °C (630 °F; 605 K)[1]
1.6 mg/L[1]
-127.9·10−6 cm3/mol
Hazards
NFPA 704 (fire diamond)
Flammability code 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilHealth code 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineReactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no codeNFPA 704 four-colored diamond
1
1
0
Flash point 171 °C (340 °F; 444 K)[1]
Structure
C2v[2]
0 D
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references
Tracking categories (test):

Phenanthrene is a polycyclic aromatic hydrocarbon (PAH) with formula C14H10, consisting of three fused benzene rings. It is a colorless, crystal-like solid, but can also appear yellow. Phenanthrene is used to make dyes, plastics and pesticides, explosives and drugs. It has also been used to make bile acids, cholesterol and steroids.[3]

Phenanthrene occurs naturally and also is a man-made chemical. Commonly, humans are exposed to phenanthrene through inhalation of cigarette smoke but there are many routes of exposure. Animal studies have shown that phenanthrene is a potential carcinogen.[3] However, according to IARC, it is not identified as a probable, possible or confirmed human carcinogen.[4]

Phenanthrene's three fused rings are angled as in the phenacenes, rather than straight as in the acenes. The compound with a phenanthrene skeleton and nitrogens at the 4 and 5 positions is known as phenanthroline.

Chemistry

Phenanthrene is nearly insoluble in water but is soluble in most low polarity organic solvents such as toluene, carbon tetrachloride, ether, chloroform, acetic acid and benzene.

The Bardhan–Sengupta phenanthrene synthesis is a classic way to make phenanthrenes.[5]

Bardhan–Senguptam phenanthrene synthesis

This process involves electrophilic aromatic substitution using a tethered cyclohexanol group using diphosphorus pentoxide, which closes the central ring onto an existing aromatic ring. Dehydrogenation using selenium converts the other rings into aromatic ones as well. The aromatization of six-membered rings by selenium is not clearly understood, but it does produce H2Se.

Phenanthrene can also be obtained photochemically from certain diarylethenes.

Reactions of phenanthrene typically occur at the 9 and 10 positions, including:

Canonical forms

Phenanthrene is more stable than its linear isomer anthracene. A classic and well established explanation is based on Clar's rule. A novel theory invokes so-called stabilizing hydrogen-hydrogen bonds between the C4 and C5 hydrogen atoms.[citation needed]

Natural occurrences

Ravatite is a natural mineral consisting of phenanthrene.[11] It is found in small amounts among a few coal burning sites. Ravatite represents a small group of organic minerals.

In plants

See also

References

  1. 1.0 1.1 1.2 1.3 1.4 Record of CAS RN 85-01-8 in the GESTIS Substance Database of the Institute for Occupational Safety and Health
  2. Peter Atkins, J. D. P., Atkins' Physical Chemistry. Oxford: 2010. Pg.443
  3. 3.0 3.1 "Phenanthrene Fact Sheet". U.S. Environmental Protection Agency. https://archive.epa.gov/epawaste/hazard/wastemin/web/pdf/phenanth.pdf. 
  4. Sigma-Alrdich SDS [1]
  5. "Bardhan Sengupta Synthesis". Comprehensive Organic Name Reactions and Reagents. 49. 2010. pp. 215–219. doi:10.1002/9780470638859.conrr049. ISBN 9780470638859. 
  6. Organic Syntheses, Coll. Vol. 4, p.757 (1963); Vol. 34, p.76 (1954) Link
  7. Organic Syntheses, Coll. Vol. 4, p.313 (1963); Vol. 34, p.31 (1954) Link.
  8. Organic Syntheses, Coll. Vol. 3, p.134 (1955); Vol. 28, p.19 (1948) Link.
  9. Organic Syntheses, Coll. Vol. 2, p.482 (1943); Vol. 16, p.63 (1936) Link.
  10. Organic Syntheses, Coll. Vol. 5, p.489 (1973); Vol. 41, p.41 (1961) Link.
  11. Ravatite Mineral Data

External links