Resistance distance
In graph theory, the resistance distance between two vertices of a simple connected graph, G, is equal to the resistance between two equivalent points on an electrical network, constructed so as to correspond to G, with each edge being replaced by a 1 ohm resistance. It is a metric on graphs.
Definition
On a graph G, the resistance distance Ωi,j between two vertices vi and vj is[1]
- [math]\displaystyle{ \Omega_{i,j}:=\Gamma_{i,i}+\Gamma_{j,j}-\Gamma_{i,j}-\Gamma_{j,i} }[/math]
where [math]\displaystyle{ \Gamma = \left(L + \frac{1}{|V|}\Phi\right)^+ }[/math], with [math]\displaystyle{ ^+ }[/math] denoting the Moore–Penrose inverse, [math]\displaystyle{ L }[/math] the Laplacian matrix of G, [math]\displaystyle{ |V| }[/math] is the number of vertices in G, and [math]\displaystyle{ \Phi }[/math] is the [math]\displaystyle{ |V|\times|V| }[/math] matrix containing all 1s.
Properties of resistance distance
If i = j then
- [math]\displaystyle{ \Omega_{i,j}=0. }[/math]
For an undirected graph
- [math]\displaystyle{ \Omega_{i,j}=\Omega_{j,i}=\Gamma_{i,i}+\Gamma_{j,j}-2\Gamma_{i,j} }[/math]
General sum rule
For any N-vertex simple connected graph G = (V, E) and arbitrary N×N matrix M:
- [math]\displaystyle{ \sum_{i,j \in V}(LML)_{i,j}\Omega_{i,j} = -2\operatorname{tr}(ML) }[/math]
From this generalized sum rule a number of relationships can be derived depending on the choice of M. Two of note are;
- [math]\displaystyle{ \begin{align} \sum_{(i,j) \in E}\Omega_{i,j} &= N - 1 \\ \sum_{i\lt j \in V}\Omega_{i,j} &= N\sum_{k=1}^{N-1} \lambda_k^{-1} \end{align} }[/math]
where the [math]\displaystyle{ \lambda_{k} }[/math] are the non-zero eigenvalues of the Laplacian matrix. This unordered sum Σi<jΩi,j is called the Kirchhoff index of the graph.
Relationship to the number of spanning trees of a graph
For a simple connected graph G = (V, E), the resistance distance between two vertices may be expressed as a function of the set of spanning trees, T, of G as follows:
- [math]\displaystyle{ \Omega_{i,j}=\begin{cases} \frac{\left | \{t:t \in T, e_{i,j} \in t\} \right \vert}{\left | T \right \vert}, & (i,j) \in E\\ \frac{\left | T'-T \right \vert}{\left | T \right \vert}, &(i,j) \not \in E \end{cases} }[/math]
where [math]\displaystyle{ T' }[/math] is the set of spanning trees for the graph [math]\displaystyle{ G'=(V, E+e_{i,j}) }[/math].
As a squared Euclidean distance
Since the Laplacian [math]\displaystyle{ L }[/math] is symmetric and positive semi-definite, so is [math]\displaystyle{ \left(L+\frac{1}{|V|}\Phi\right) }[/math], thus its pseudo-inverse [math]\displaystyle{ \Gamma }[/math] is also symmetric and positive semi-definite. Thus, there is a [math]\displaystyle{ K }[/math] such that [math]\displaystyle{ \Gamma = KK^\textsf{T} }[/math] and we can write:
- [math]\displaystyle{ \Omega_{i,j} = \Gamma_{i,i} + \Gamma_{j,j} - \Gamma_{i,j} - \Gamma_{j,i} = K_iK_i^\textsf{T} + K_j K_j^\textsf{T} - K_i K_j^\textsf{T} - K_j K_i^\textsf{T} = \left(K_i - K_j\right)^2 }[/math]
showing that the square root of the resistance distance corresponds to the Euclidean distance in the space spanned by [math]\displaystyle{ K }[/math].
Connection with Fibonacci numbers
A fan graph is a graph on [math]\displaystyle{ n+1 }[/math] vertices where there is an edge between vertex [math]\displaystyle{ i }[/math] and [math]\displaystyle{ n+1 }[/math] for all [math]\displaystyle{ i = 1, 2, 3, ...n, }[/math] and there is an edge between vertex [math]\displaystyle{ i }[/math] and [math]\displaystyle{ i+1 }[/math] for all [math]\displaystyle{ i = 1, 2, 3, ..., n-1. }[/math]
The resistance distance between vertex [math]\displaystyle{ n + 1 }[/math] and vertex [math]\displaystyle{ i \in \{1,2,3,...,n\} }[/math] is [math]\displaystyle{ \frac{ F_{2(n-i)+1} F_{2i-1} }{ F_{2n} } }[/math] where [math]\displaystyle{ F_{j} }[/math] is the [math]\displaystyle{ j }[/math]-th Fibonacci number, for [math]\displaystyle{ j \geq 0 }[/math].[2][3]
See also
References
- ↑ https://mathworld.wolfram.com/ResistanceDistance.html
- ↑ Bapat, R. B.; Gupta, Somit (2010). "Resistance distance in wheels and fans". Indian Journal of Pure and Applied Mathematics 41: 1–13. doi:10.1007/s13226-010-0004-2.
- ↑ http://www.isid.ac.in/~rbb/somitnew.pdf
- Klein, D. J.; Randic, M. J. (1993). "Resistance Distance". J. Math. Chem. 12: 81–95. doi:10.1007/BF01164627.
- Gutman, Ivan; Mohar, Bojan (1996). "The quasi-Wiener and the Kirchhoff indices coincide". J. Chem. Inf. Comput. Sci. 36 (5): 982–985. doi:10.1021/ci960007t.
- Palacios, Jose Luis (2001). "Closed-form formulas for the Kirchhoff index". Int. J. Quantum Chem. 81 (2): 135–140. doi:10.1002/1097-461X(2001)81:2<135::AID-QUA4>3.0.CO;2-G.
- Babic, D.; Klein, D. J.; Lukovits, I.; Nikolic, S.; Trinajstic, N. (2002). "Resistance-distance matrix: a computational algorithm and its application". Int. J. Quantum Chem. 90 (1): 166–167. doi:10.1002/qua.10057.
- Klein, D. J. (2002). "Resistance Distance Sum Rules". Croatica Chem. Acta 75 (2): 633–649. Archived from the original on 2012-03-26. https://web.archive.org/web/20120326104653/http://www.stkpula.hr/ccacaa/CCA-PDF/cca2002/v75-n2/CCA_75_2002_633_649_KLEIN.pdf.
- Bapat, Ravindra B.; Gutman, Ivan; Xiao, Wenjun (2003). "A simple method for computing resistance distance". Z. Naturforsch. 58a (9–10): 494–498. doi:10.1515/zna-2003-9-1003. Bibcode: 2003ZNatA..58..494B. http://www.znaturforsch.com/aa/v58a/c58a.htm#No9.
- Placios, Jose Luis (2004). "Foster's formulas via probability and the Kirchhoff index". Method. Comput. Appl. Probab. 6 (4): 381–387. doi:10.1023/B:MCAP.0000045086.76839.54.
- Bendito, Enrique; Carmona, Angeles; Encinas, Andres M.; Gesto, Jose M. (2008). "A formula for the Kirchhoff index". Int. J. Quantum Chem. 108 (6): 1200–1206. doi:10.1002/qua.21588. Bibcode: 2008IJQC..108.1200B.
- Zhou, Bo; Trinajstic, Nenad (2009). "The Kirchhoff index and the matching number". Int. J. Quantum Chem. 109 (13): 2978–2981. doi:10.1002/qua.21915. Bibcode: 2009IJQC..109.2978Z.
- Zhou, Bo; Trinajstic, Nenad (2009). "On resistance-distance and the Kirchhoff index". J. Math. Chem. 46: 283–289. doi:10.1007/s10910-008-9459-3.
- Zhou, Bo (2011). "On sum of powers of Laplacian eigenvalues and Laplacian Estrada Index of graphs". Match Commun. Math. Comput. Chem 62: 611–619.
- Zhang, Heping; Yang, Yujun (2007). "Resistance distance and Kirchhoff index in circulant graphs". Int. J. Quantum Chem. 107 (2): 330–339. doi:10.1002/qua.21068. Bibcode: 2007IJQC..107..330Z.
- Yang, Yujun; Zhang, Heping (2008). "Some rules on resistance distance with applications". J. Phys. A: Math. Theor. 41 (44): 445203. doi:10.1088/1751-8113/41/44/445203. Bibcode: 2008JPhA...41R5203Y.