Abel's binomial theorem

From HandWiki
Revision as of 13:48, 20 July 2022 by imported>Jworkorg (linkage)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Mathematical identity involving sums of binomial coefficients

Abel's binomial theorem, named after Niels Henrik Abel, is a mathematical identity involving sums of binomial coefficients. It states the following:

[math]\displaystyle{ \sum_{k=0}^m \binom{m}{k} (w+m-k)^{m-k-1}(z+k)^k=w^{-1}(z+w+m)^m. }[/math]

Example

The case m = 2

[math]\displaystyle{ \begin{align} & {} \quad \binom{2}{0}(w+2)^1(z+0)^0+\binom{2}{1}(w+1)^0(z+1)^1+\binom{2}{2}(w+0)^{-1}(z+2)^2 \\ & = (w+2)+2(z+1)+\frac{(z+2)^2}{w} \\ & = \frac{(z+w+2)^2}{w}. \end{align} }[/math]

See also

References