Size homotopy group

From HandWiki
Revision as of 09:27, 9 May 2022 by imported>LinXED (add)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

The concept of size homotopy group is analogous in size theory of the classical concept of homotopy group. In order to give its definition, let us assume that a size pair [math]\displaystyle{ (M,\varphi) }[/math] is given, where [math]\displaystyle{ M }[/math] is a closed manifold of class [math]\displaystyle{ C^0\ }[/math] and [math]\displaystyle{ \varphi:M\to \mathbb{R}^k }[/math] is a continuous function. Consider the lexicographical order [math]\displaystyle{ \preceq }[/math] on [math]\displaystyle{ \mathbb{R}^k }[/math] defined by setting [math]\displaystyle{ (x_1,\ldots,x_k)\preceq(y_1,\ldots,y_k)\ }[/math] if and only if [math]\displaystyle{ x_1 \le y_1,\ldots, x_k \le y_k }[/math]. For every [math]\displaystyle{ Y\in\mathbb{R}^k }[/math] set [math]\displaystyle{ M_{Y}=\{Z\in\mathbb{R}^k:Z\preceq Y\} }[/math].

Assume that [math]\displaystyle{ P\in M_X\ }[/math] and [math]\displaystyle{ X\preceq Y\ }[/math]. If [math]\displaystyle{ \alpha\ }[/math], [math]\displaystyle{ \beta\ }[/math] are two paths from [math]\displaystyle{ P\ }[/math] to [math]\displaystyle{ P\ }[/math] and a homotopy from [math]\displaystyle{ \alpha\ }[/math] to [math]\displaystyle{ \beta\ }[/math], based at [math]\displaystyle{ P\ }[/math], exists in the topological space [math]\displaystyle{ M_{Y}\ }[/math], then we write [math]\displaystyle{ \alpha \approx_{Y}\beta\ }[/math]. The first size homotopy group of the size pair [math]\displaystyle{ (M,\varphi)\ }[/math] computed at [math]\displaystyle{ (X,Y)\ }[/math] is defined to be the quotient set of the set of all paths from [math]\displaystyle{ P\ }[/math] to [math]\displaystyle{ P\ }[/math] in [math]\displaystyle{ M_X\ }[/math] with respect to the equivalence relation [math]\displaystyle{ \approx_{Y}\ }[/math], endowed with the operation induced by the usual composition of based loops.[1]

In other words, the first size homotopy group of the size pair [math]\displaystyle{ (M,\varphi)\ }[/math] computed at [math]\displaystyle{ (X,Y)\ }[/math] and [math]\displaystyle{ P\ }[/math] is the image [math]\displaystyle{ h_{XY}(\pi_1(M_X,P))\ }[/math] of the first homotopy group [math]\displaystyle{ \pi_1(M_X,P)\ }[/math] with base point [math]\displaystyle{ P\ }[/math] of the topological space [math]\displaystyle{ M_X\ }[/math], when [math]\displaystyle{ h_{XY}\ }[/math] is the homomorphism induced by the inclusion of [math]\displaystyle{ M_X\ }[/math] in [math]\displaystyle{ M_Y\ }[/math].

The [math]\displaystyle{ n }[/math]-th size homotopy group is obtained by substituting the loops based at [math]\displaystyle{ P\ }[/math] with the continuous functions [math]\displaystyle{ \alpha:S^n\to M\ }[/math] taking a fixed point of [math]\displaystyle{ S^n\ }[/math] to [math]\displaystyle{ P\ }[/math], as happens when higher homotopy groups are defined.

See also

References

  1. Patrizio Frosini, Michele Mulazzani, Size homotopy groups for computation of natural size distances, Bulletin of the Belgian Mathematical Society – Simon Stevin, 6:455–464, 1999.