Chemistry:Silanide

From HandWiki
Revision as of 05:47, 6 February 2024 by Jport (talk | contribs) (add)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Anionic molecule derived from silane
Silanide
SiH3 -.svg
Names
Other names
Trihydridosilanide
Trihydridosilicate(1-)
Trihydridosilicate(IV)
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
266
Properties
SiH
3
Molar mass 31.109 g·mol−1
Related compounds
Related compounds
Methyl anion, Germyl, Stannyl, Phosphinide, Arsinide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

A silanide is a chemical compound containing an anionic silicon(IV) centre, the parent ion being SiH
3
. The hydrogen atoms can also be substituted to produced more complex derivative anions such as tris(trimethylsilyl)silanide (hypersilyl),[1] tris(tert-butyl)silanide, tris(pentafluoroethyl)silanide, or triphenylsilanide.[2] The simple silanide ion can also be called trihydridosilanide or silyl hydride.

Formation

The simplest trihydridosilanides can be produced from a triphenylsilanide in a reaction with hydrogen or PhSiH
3
at standard conditions. The triphenylsilanide can be made in a reaction of Ph3SiSiMe3 with the metal tert-butoxy compound.[3]

Reacting hydrogen with potassium triphenylsilyl K(Me
6
TREN)SiPh
3
can yield potassium silanide.[4]

Other method to form silanides are to heat a heavy metal silicide with hydrogen,[5] or react the dissolved metal with silane.[3]

Atomic metals can react directly with silane to yield unstable molecules with HMSiH
3
formulae. These can be condensed into a noble gas matrix. With titanium this also yields molecules with hydrogen bridging between silicon and titanium.[6]

Properties

The silanide ion has an effective ionic radius of 2.26 Å. In salts at room temperature the ion's orientation is not stable, and it rotates. But at lower temperatures (under 200K) silanide becomes fixed in orientation.[7] The ordered structure forms the β- phase, whereas the higher temperature and more symmetrical disordered structure is called α- phase. The β- phase is about 15% more compact than the α-phase.[8]

The silanide ion has C3v symmetry. The silicon to hydrogen bond length is 1.52 Å and the H-Si-H bond angle is 92.2°, not far off a right angle.[8] In a range of compounds, the stretching force constant for the Si-H bond is 1.9 to 2.05 N cm–1, which is much softer than that of silane's 2.77 N cm–1.[8]

Silanide salts are very easily damaged by air or water.[7]

Heating to under 414K results in the release of hydrogen and the formation of a Zintl-phase MSi. If an alkali silande is rapidly heated to 500K another irreversible reaction occurs:

46KSiH
3
→ K
8
Si
46
+ 38KH + 50H
2
.[9]

Use

Trihydridosilanides have been investigated as hydrogen storage materials.[10] Potassium silanide can reversibly gain or lose hydrogen over several hours at 373K. However this does not work for sodium silanide.[5] The rate of hydrogen exchange may be improved by a catalyst. Unwanted reactions may reduce the number of times this process can happen.[11]

List

name formula Crystal system space group unit cell volume density comment references
tetramethyl-1,4,7,10-tetraaminocyclododecane lithium silanide Li(Me
4
TACD)SiH
3
colourless; unstable [3]
trisilylamine N(SiH
3
)
3
mp -105 °C; planar [12]
tetramethyl-1,4,7,10-tetraaminocyclododecane sodium silanide Na(Me
4
TACD)SiH
3
tetragonal P4/n a=9.77 c=9.45 Z=2 901 1.041 colourless [3]
Na
8
(OC
2
H
4
OC
2
H
4
OCH
3
)
6
(SiH
3
)
2
H is bridge [13]
trisilylphosphine P(SiH
3
)
3
[14]
Potassium silanide KSiH
3
cubic a=7.23 377.9 1.241 pale yellow [7][15]
β-KSiH
3
orthorhombic Pnma a = 8.800, b = 5.416, c = 6.823, Z = 4 325.2 [16]
tetramethyl-1,4,7,10-tetraaminocyclododecane potassium silanide K(Me4TACD)SiH3•2C6H6 tetragonal P42/mnm a=12.3401 c=14.9372 Z=2 2274.6 1.10 colourless [3]
[K(18-crown-6)SiH3·THF] [17]
[K(18-crown-6)SiH3·HSiPh3] H is bridge [17]
Cp
2
(Me
3
P)TiSiH
3
purple [6]
[(C
5
H
5
)
2
TiSiH
2
]
2
tetragonal P42/mnm a = 8.018, c = 16.113, Z = 2 olive green; Ti-SiH2-Ti-SiH2- ring [18]
[Cp2Ti(μ-HSiH2)]2 dark blue [19]
Cp2Ti(μ-HSiH2)(μ-H)TiCp2 dark yellowish green [19]
HCrSiH
3
[6]
[Cp(OC)
2
Fe]
2
SiH
2
triclinic P1 a=6.318 b=10.653 c=12.453 α=67.884 β=75.35 γ=72.79 Z=2 732.1 1.742 light yellow [20]
[(μ2-CO)Cp2(OC)2Fe2]SiH2 dark red [20]
[(μ2-CO)Cp2(OC)2Fe2][Cp(OC)2Fe]SiH dark red [20]
HNiSiH
3
[6]
HZnSiH
3
[6]
[(dtbpCbz)GeSiH3]2•C6H18 monoclinic P21/n a 16.144 b 15.0369 c 21.974 β 91.927° [21]
trisilylarsine As(SiH
3
)
3
[14]
rubidium silanide RbSiH
3
cubic a=7.52 425.3 1.824 yellow [7]
tetramethyl-1,4,7,10-tetraaminocyclododecane rubidium silanide Rb(Me4TACD)SiH3•2C6H6 tetragonal P42/mnm a=12.3934 c=14.9632 Z=2 2298.3 1.223 yellow [3]
K
0.5
Rb
0.5
SiH
3
cubic P43m a=12.832 2112.7 [22]
Mo(CO)(H)(SiH
3
)(depe)
2
[6]
[Cp(OC)
2
Ru]
2
SiH
2
beige mp 25 [20]
trisilylstibine Sb(SiH
3
)
3
[14]
caesium silanide CsSiH
3
cubic a=7.86 485.6 2.243 yellow [3][7]
Cs
0.5
K
0.5
SiH
3
cubic P43m a=13.0965 2246.3 [22]
Cs
0.5
Rb
0.5
SiH
3
cubic P43m a=13.2982 2351.7 [22]
bis(di-tert-butylphenyl)di-tert-butylcanozalide [(dtbpCbz)BaSiH3]8 P4/nnc a=38.7375 c=44.8635 [21]
[Cp
2
SmSiH
3
]
3
orange [6]
(C
5
Me
5
)Sm(SiH
3
)(THF)(C
5
Me
5
)K(THF)
dark red [23]
(C
5
Me
5
)Eu(SiH
3
)(THF)(C
5
Me
5
)K(THF)
orthorhombic Pna21 a=19.320 b=16.742 c=10.027 Z=4 3240.0 1.406 orange-red [23]
(C
5
Me
5
)Yb(SiH
3
)(THF)(C
5
Me
5
)K(THF)
orthorhombic Pna21 a=19.321 b=16.496 c=9.926 Z=4 3163.7 dark red [23]
Cp(iPr3P)Os(H)(Br)SiH3 yellow [6]
trans-(Cy
3
P)
2
HPtSiH
3
[6]

Related

Under high hydrogen pressure, pentacoordinated and hexacoordinated silicon hydride ions are stabilised including SiH
5
and SiH2−
6
.[24]

More complex derivatives include silanimine -NHSiH
3
,[25]

With a double bond between silicon and the metal a silylene complex is formed. With a triple bond, M≡SiH forms with metals such as molybdenum and tungsten.

With less hydrogen, a polyanionic hydride 1[(SiH)] can be formed.[26]

General organic compounds are termed silylium ions.

References

  1. Klinkhammer, Karl W. (September 1997). "Tris(trimethylsilyl)silanides of the Heavier Alkali Metals—A Structural Study" (in de). Chemistry - A European Journal 3 (9): 1418–1431. doi:10.1002/chem.19970030908. http://doi.wiley.com/10.1002/chem.19970030908. 
  2. Lickiss, Paul D.; Smith, Colin M. (November 1995). "Silicon derivatives of the metals of groups 1 and 2" (in en). Coordination Chemistry Reviews 145: 75–124. doi:10.1016/0010-8545(95)90218-X. https://linkinghub.elsevier.com/retrieve/pii/001085459590218X. 
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 Schuhknecht, Danny; Leich, Valeri; Spaniol, Thomas P.; Douair, Iskander; Maron, Laurent; Okuda, Jun (2 March 2020). "Alkali Metal Triphenyl- and Trihydridosilanides Stabilized by a Macrocyclic Polyamine Ligand". Chemistry – A European Journal 26 (13): 2821–2825. doi:10.1002/chem.202000187. PMID 31943432. 
  4. Leich, V.; Spaniol, T. P.; Okuda, J. (2015). "Formation of α-[KSiH 3 ] by hydrogenolysis of potassium triphenylsilyl". Chemical Communications 51 (79): 14772–14774. doi:10.1039/C5CC06187C. PMID 26299566. 
  5. 5.0 5.1 Tang, Wan Si; Chotard, Jean-Noël; Raybaud, Pascal; Janot, Raphaël (2012). "Hydrogenation properties of KSi and NaSi Zintl phases". Physical Chemistry Chemical Physics 14 (38): 13319–13324. doi:10.1039/C2CP41589E. PMID 22930067. Bibcode2012PCCP...1413319T. 
  6. 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 Corey, Joyce Y. (2011-02-09). "Reactions of Hydrosilanes with Transition Metal Complexes and Characterization of the Products" (in en). Chemical Reviews 111 (2): 863–1071. doi:10.1021/cr900359c. ISSN 0009-2665. PMID 21250634. https://pubs.acs.org/doi/10.1021/cr900359c. 
  7. 7.0 7.1 7.2 7.3 7.4 Weiss, Erwin; Hencken, Günther; Kühr, Heinrich (September 1970). "Kristallstrukturen und kernmagnetische Breitlinienresonanz der Alkalisilyle SiH3M (M = K, Rb, Cs)" (in de). Chemische Berichte 103 (9): 2868–2872. doi:10.1002/cber.19701030924. https://onlinelibrary.wiley.com/doi/10.1002/cber.19701030924. 
  8. 8.0 8.1 8.2 Kranak, Verina F.; Lin, Yuan-Chih; Karlsson, Maths; Mink, Janos; Norberg, Stefan T.; Häussermann, Ulrich (2 March 2015). "Structural and Vibrational Properties of Silyl (SiH 3 – ) Anions in KSiH 3 and RbSiH 3 : New Insight into Si–H Interactions". Inorganic Chemistry 54 (5): 2300–2309. doi:10.1021/ic502931e. PMID 25668724. 
  9. Auer, Henry; Kohlmann, Holger (3 August 2017). "In situ Investigations on the Formation and Decomposition of KSiH 3 and CsSiH 3: In situ Investigations on the Formation and Decomposition of KSiH 3 and CsSiH 3". Zeitschrift für anorganische und allgemeine Chemie 643 (14): 945–951. doi:10.1002/zaac.201700164. 
  10. Chotard, Jean-Noël; Tang, Wan Si; Raybaud, Pascal; Janot, Raphaël (24 October 2011). "Potassium Silanide (KSiH3): A Reversible Hydrogen Storage Material". Chemistry - A European Journal 17 (44): 12302–12309. doi:10.1002/chem.201101865. PMID 21953694. 
  11. Janot, R.; Tang, W. S.; Clémençon, D.; Chotard, J.-N. (2016). "Catalyzed KSiH 3 as a reversible hydrogen storage material". Journal of Materials Chemistry A 4 (48): 19045–19052. doi:10.1039/C6TA07563K. 
  12. Hedberg, Kenneth (December 1955). "The Molecular Structure of Trisilylamine (SiH 3 ) 3 N 1,2" (in en). Journal of the American Chemical Society 77 (24): 6491–6492. doi:10.1021/ja01629a015. ISSN 0002-7863. https://pubs.acs.org/doi/abs/10.1021/ja01629a015. 
  13. Pritzkow, Hans; Lobreyer, Thomas; Sundermeyer, Wolfgang; van Eikema Hommes, Nicolaas J. R.; von Ragué Schleyer, Paul (1994-02-01). "Inversely Coordinating Silanide Ions in an Oligomeric Sodium Alcoholate" (in en). Angewandte Chemie International Edition in English 33 (2): 216–217. doi:10.1002/anie.199402161. ISSN 0570-0833. https://onlinelibrary.wiley.com/doi/10.1002/anie.199402161. 
  14. 14.0 14.1 14.2 Amberger, Eberhard; Boeters, Hans D. (July 1964). "Trisilylverbindungen" (in de). Chemische Berichte 97 (7): 1999–2004. doi:10.1002/cber.19640970731. https://onlinelibrary.wiley.com/doi/10.1002/cber.19640970731. 
  15. Vekilova, Olga Yu.; Beyer, Doreen C.; Bhat, Shrikant; Farla, Robert; Baran, Volodymyr; Simak, Sergei I.; Kohlmann, Holger; Häussermann, Ulrich et al. (2023-05-15). "Formation and Polymorphism of Semiconducting K 2 SiH 6 and Strategy for Metallization" (in en). Inorganic Chemistry 62 (21): 8093–8100. doi:10.1021/acs.inorgchem.2c04370. ISSN 0020-1669. PMID 37188333. PMC 10231339. https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c04370. 
  16. Mundt, Otto; Becker, Gerd; Hartmann, Hans-Martin; Schwarz, Wolfgang (May 1989). "Metallderivate von Molekülverbindungen. II. Darstellung und Struktur des beta-Kaliumsilanids" (in de). Zeitschrift für anorganische und allgemeine Chemie 572 (1): 75–88. doi:10.1002/zaac.19895720109. ISSN 0044-2313. https://onlinelibrary.wiley.com/doi/10.1002/zaac.19895720109. 
  17. 17.0 17.1 Wolstenholme, David J.; Prince, Paul D.; McGrady, G. Sean; Landry, Michael J.; Steed, Jonathan W. (2011-11-07). "Structure and Bonding of KSiH 3 and Its 18-Crown-6 Derivatives: Unusual Ambidentate Behavior of the SiH 3 – Anion" (in en). Inorganic Chemistry 50 (21): 11222–11227. doi:10.1021/ic201774x. ISSN 0020-1669. PMID 21981304. https://pubs.acs.org/doi/10.1021/ic201774x. 
  18. Hencken, Günther; Weiss, Erwin (June 1973). "Darstellung und Kristallstruktur des Tetrakis(π-cyclopentadienyl)-di-μ-silyleno-dititans [(C5H5)2TiSiH22"] (in de). Chemische Berichte 106 (6): 1747–1751. doi:10.1002/cber.19731060608. https://onlinelibrary.wiley.com/doi/10.1002/cber.19731060608. 
  19. 19.0 19.1 Hao, Leijun; Lebuis, Anne-Marie; Harrod, John F.; Hao, Leijun; Samuel, Edmond (1997). "Preparation and characterization of titanocene silyl hydrides [Cp2Ti(μ-HSiH2)2 and [Cp2Ti(μ-HSiH2)(μ-H)TiCp2]"]. Chemical Communications (22): 2193–2194. doi:10.1039/a705102f. http://xlink.rsc.org/?DOI=a705102f. 
  20. 20.0 20.1 20.2 20.3 Malisch, Wolfgang; Vögler, Matthias; Käb, Harald; Wekel, Hans-Ulrich (July 2002). "[(μ 2 -CO)Cp 2 (OC) 2 Fe 2 [Cp(OC) 2 Fe]SiH: A SiH-Functionalized Tris(metallo)silane. Synthesis from [Cp(OC) 2 Fe] 2 SiH 2 1"] (in en). Organometallics 21 (14): 2830–2832. doi:10.1021/om0201922. ISSN 0276-7333. https://pubs.acs.org/doi/abs/10.1021/om0201922. 
  21. 21.0 21.1 Sun, Xiaofei; Hinz, Alexander (2023-06-21). "A Barium Complex of the Silanide SiH 3 – : Hydride Surrogate and Source of Silicon" (in en). Inorganic Chemistry 62 (26): 10249–10255. doi:10.1021/acs.inorgchem.3c01045. ISSN 0020-1669. PMID 37341997. https://pubs.acs.org/doi/10.1021/acs.inorgchem.3c01045. 
  22. 22.0 22.1 22.2 Tang, Wan Si; Dimitrievska, Mirjana; Chotard, Jean-Noël; Zhou, Wei; Janot, Raphaël; Skripov, Alexander V.; Udovic, Terrence J. (2016-09-29). "Structural and Dynamical Trends in Alkali-Metal Silanides Characterized by Neutron-Scattering Methods" (in en). The Journal of Physical Chemistry C 120 (38): 21218–21227. doi:10.1021/acs.jpcc.6b06591. ISSN 1932-7447. https://pubs.acs.org/doi/10.1021/acs.jpcc.6b06591. 
  23. 23.0 23.1 23.2 Hou, Zhaomin; Zhang, Yugen; Nishiura, Masayoshi; Wakatsuki, Yasuo (2003-01-01). "(Pentamethylcyclopentadienyl)lanthanide(II) Alkyl and Silyl Complexes: Synthesis, Structures, and Catalysis in Polymerization of Ethylene and Styrene" (in en). Organometallics 22 (1): 129–135. doi:10.1021/om020742w. ISSN 0276-7333. https://pubs.acs.org/doi/10.1021/om020742w. 
  24. Liang, Tianxiao; Zhang, Zihan; Feng, Xiaolei; Jia, Haojun; Pickard, Chris J.; Redfern, Simon A. T.; Duan, Defang (2020-11-18). "Ternary hypervalent silicon hydrides via lithium at high pressure" (in en). Physical Review Materials 4 (11): 113607. doi:10.1103/PhysRevMaterials.4.113607. ISSN 2475-9953. Bibcode2020PhRvM...4k3607L. https://link.aps.org/doi/10.1103/PhysRevMaterials.4.113607. 
  25. Chen, Yang; Song, Haibin; Cui, Chunming (2010-11-15). "Dehydrosilylation of ArNHSiH3 with Ytterbium(II) Amide: Formation of a Dimeric Ytterbium(II) Silanimine Complex" (in en). Angewandte Chemie 122 (47): 9142–9145. doi:10.1002/ange.201004856. Bibcode2010AngCh.122.9142C. https://onlinelibrary.wiley.com/doi/10.1002/ange.201004856. 
  26. Auer, Henry; Guehne, Robin; Bertmer, Marko; Weber, Sebastian; Wenderoth, Patrick; Hansen, Thomas Christian; Haase, Jürgen; Kohlmann, Holger (6 February 2017). "Hydrides of Alkaline Earth–Tetrel (AeTt) Zintl Phases: Covalent Tt–H Bonds from Silicon to Tin". Inorganic Chemistry 56 (3): 1061–1071. doi:10.1021/acs.inorgchem.6b01944. PMID 28098994. http://ul.qucosa.de/id/qucosa%3A33406.