Affine hull

From HandWiki
Short description: Smallest affine subspace that contains a subset

In mathematics, the affine hull or affine span of a set S in Euclidean space Rn is the smallest affine set containing S,[1] or equivalently, the intersection of all affine sets containing S. Here, an affine set may be defined as the translation of a vector subspace.

The affine hull aff(S) of S is the set of all affine combinations of elements of S, that is,

[math]\displaystyle{ \operatorname{aff} (S)=\left\{\sum_{i=1}^k \alpha_i x_i \, \Bigg | \, k\gt 0, \, x_i\in S, \, \alpha_i\in \mathbb{R}, \, \sum_{i=1}^k \alpha_i=1 \right\}. }[/math]

Examples

  • The affine hull of the empty set is the empty set.
  • The affine hull of a singleton (a set made of one single element) is the singleton itself.
  • The affine hull of a set of two different points is the line through them.
  • The affine hull of a set of three points not on one line is the plane going through them.
  • The affine hull of a set of four points not in a plane in R3 is the entire space R3.

Properties

For any subsets [math]\displaystyle{ S, T \subseteq X }[/math]

  • [math]\displaystyle{ \operatorname{aff}(\operatorname{aff} S) = \operatorname{aff} S }[/math]
  • [math]\displaystyle{ \operatorname{aff} S }[/math] is a closed set if [math]\displaystyle{ X }[/math] is finite dimensional.
  • [math]\displaystyle{ \operatorname{aff}(S + T)=\operatorname{aff} S + \operatorname{aff} T }[/math]
  • If [math]\displaystyle{ 0 \in S }[/math] then [math]\displaystyle{ \operatorname{aff} S = \operatorname{span} S }[/math].
  • If [math]\displaystyle{ s_0 \in S }[/math] then [math]\displaystyle{ \operatorname{aff}(S) - s_0 = \operatorname{span}(S - s_0) }[/math] is a linear subspace of [math]\displaystyle{ X }[/math].
  • [math]\displaystyle{ \operatorname{aff}(S - S) = \operatorname{span}(S - S) }[/math].
    • So in particular, [math]\displaystyle{ \operatorname{aff}(S - S) }[/math] is always a vector subspace of [math]\displaystyle{ X }[/math].
  • If [math]\displaystyle{ S }[/math] is convex then [math]\displaystyle{ \operatorname{aff}(S - S) = \displaystyle\bigcup_{\lambda \gt 0} \lambda (S - S) }[/math]
  • For every [math]\displaystyle{ s_0 \in S }[/math], [math]\displaystyle{ \operatorname{aff} S = s_0 + \operatorname{cone}(S - S) }[/math] where [math]\displaystyle{ \operatorname{cone}(S - S) }[/math] is the smallest cone containing [math]\displaystyle{ S - S }[/math] (here, a set [math]\displaystyle{ C \subseteq X }[/math] is a cone if [math]\displaystyle{ r c \in C }[/math] for all [math]\displaystyle{ c \in C }[/math] and all non-negative [math]\displaystyle{ r \geq 0 }[/math]).
    • Hence [math]\displaystyle{ \operatorname{cone}(S - S) }[/math] is always a linear subspace of [math]\displaystyle{ X }[/math] parallel to [math]\displaystyle{ \operatorname{aff} S }[/math].

Related sets

  • If instead of an affine combination one uses a convex combination, that is one requires in the formula above that all [math]\displaystyle{ \alpha_i }[/math] be non-negative, one obtains the convex hull of S, which cannot be larger than the affine hull of S as more restrictions are involved.
  • The notion of conical combination gives rise to the notion of the conical hull
  • If however one puts no restrictions at all on the numbers [math]\displaystyle{ \alpha_i }[/math], instead of an affine combination one has a linear combination, and the resulting set is the linear span of S, which contains the affine hull of S.

References

  1. Roman 2008, p. 430 §16

Sources

  • R.J. Webster, Convexity, Oxford University Press, 1994. ISBN:0-19-853147-8.
  • {{citation | last=Roman | first=Stephen