Balanced polygamma function

From HandWiki

In mathematics, the generalized polygamma function or balanced negapolygamma function is a function introduced by Olivier Espinosa Aldunate and Victor Hugo Moll.[1] It generalizes the polygamma function to negative and fractional order, but remains equal to it for integer positive orders.

Definition

The generalized polygamma function is defined as follows:

[math]\displaystyle{ \psi(z,q)=\frac{\zeta'(z+1,q)+\bigl(\psi(-z)+\gamma \bigr) \zeta (z+1,q)}{\Gamma (-z)} }[/math]

or alternatively,

[math]\displaystyle{ \psi(z,q)=e^{- \gamma z}\frac{\partial}{\partial z}\left(e^{\gamma z}\frac{\zeta(z+1,q)}{\Gamma(-z)}\right), }[/math]

where ψ(z) is the polygamma function and ζ(z,q), is the Hurwitz zeta function.

The function is balanced, in that it satisfies the conditions

[math]\displaystyle{ f(0)=f(1) \quad \text{and} \quad \int_0^1 f(x)\, dx = 0 }[/math].

Relations

Several special functions can be expressed in terms of generalized polygamma function.

[math]\displaystyle{ \begin{align} \psi(x) &= \psi(0,x)\\ \psi^{(n)}(x)&=\psi(n,x) \qquad n\in\mathbb{N} \\ \Gamma(x)&=\exp\left( \psi(-1,x)+\tfrac12 \ln 2\pi \right)\\ \zeta(z,q)&=\frac{\Gamma (1-z)}{\ln 2} \left(2^{-z} \psi \left(z-1,\frac{q+1}{2}\right)+2^{-z} \psi \left(z-1,\frac{q}{2}\right)-\psi(z-1,q)\right)\\ \zeta'(-1,x)&=\psi(-2, x) + \frac{x^2}2 - \frac{x}2 + \frac1{12} \\ B_n(q) &= -\frac{\Gamma (n+1)}{\ln 2} \left(2^{n-1} \psi\left(-n,\frac{q+1}{2}\right)+2^{n-1} \psi\left(-n,\frac{q}{2}\right)-\psi(-n,q)\right) \end{align} }[/math]

where Bn(q) are the Bernoulli polynomials

[math]\displaystyle{ K(z)=A \exp\left(\psi(-2,z)+\frac{z^2-z}{2}\right) }[/math]

where K(z) is the K-function and A is the Glaisher constant.

Special values

The balanced polygamma function can be expressed in a closed form at certain points (where A is the Glaisher constant and G is the Catalan constant):

[math]\displaystyle{ \begin{align} \psi\left(-2,\tfrac14\right)&=\tfrac18\ln 2\pi+\tfrac98\ln A+\frac{G}{4\pi} && \\ \psi\left(-2,\tfrac12\right)&=\tfrac14\ln\pi+\tfrac32\ln A+\tfrac5{24}\ln2 & \\ \psi\left(-3,\tfrac12\right)&=\tfrac1{16}\ln 2\pi+\tfrac12\ln A+\frac{7\zeta(3)}{32\pi^2}\\ \psi(-2,1)&=\tfrac12\ln 2\pi &\\ \psi(-3,1)&=\tfrac14\ln 2\pi+\ln A\\ \psi(-2,2)&=\ln 2\pi-1 &\\ \psi(-3,2)&=\ln 2\pi+2\ln A-\tfrac34 \\\end{align} }[/math]

References

  1. Espinosa, Olivier; Moll, Victor Hugo (Apr 2004). "A Generalized polygamma function". Integral Transforms and Special Functions 15 (2): 101–115. http://www.math.tulane.edu/~vhm/papers_html/genoff.pdf. open access