Biography:Ulrich Pinkall
Ulrich Pinkall | |
---|---|
Born | 1955 (age 68–69) |
Alma mater | University of Freiburg (1982, PhD) |
Awards | Otto Hahn Medal |
Scientific career | |
Fields | Mathematics |
Institutions | |
Doctoral advisor | Martin Barner |
Ulrich Pinkall (born 1955) is a German mathematician, specializing in differential geometry and computer graphics.[1]
Pinkall studied mathematics at the University of Freiburg with a Diplom in 1979 and a doctorate in 1982 with thesis Dupin'sche Hyperflächen (Dupin's hypersurfaces)[2] under the supervision of Martin Barner.[3] Pinkall was then a research assistant in Freiburg until 1984 and from 1984 to 1986 at the Max Planck Institute for Mathematics in Bonn. In 1985 he completed his habilitation in Bonn with thesis Totale Absolutkrümmung immersierter Flächen (Total absolute curvature of immersed surfaces). Since 1986 he is professor at TU Berlin.[1]
In 1985 he received the Otto Hahn Medal of the Max Planck Society. In 1986 he received a Heisenberg-Stipendium from the Deutsche Forschungsgemeinschaft (DFG). From 1992 to 2003 he was a speaker of the Sonderforschungsbereich (SFB) 288 (differential geometry and quantum physics).
In 1998 he was an Invited Speaker with talk Quaternionic analysis of Riemann surfaces and differential geometry at the International Congress of Mathematicians in Berlin.[4]
Selected publications
- Pinkall, U. (1985). "Regular homotopy classes of immersed surfaces". Topology 24 (4): 421–434. doi:10.1016/0040-9383(85)90013-8. https://www.maths.ed.ac.uk/~v1ranick/papers/pinkall2.pdf.
- Pinkall, U. (1985). "Hopf tori in [math]\displaystyle{ S^3 }[/math]". Inventiones Mathematicae 81 (2): 379–386. doi:10.1007/BF01389060. Bibcode: 1985InMat..81..379P.
- Nomizu, Katsumi; Pinkall, Ulrich (1987). "On the geometry of affine immersions". Mathematische Zeitschrift 195 (2): 165–178. doi:10.1007/BF01166455.
- Conformal geometry. Max-Planck-Institut für Mathematik, Seminar Bonn 1985/86. F. Vieweg. 1988. ISBN 978-3-528-08982-5.[5]
- Karcher, H.; Pinkall, U.; Sterling, I. (1988). "New minimal surfaces in [math]\displaystyle{ S^3 }[/math]". Journal of Differential Geometry 28 (2): 169–185. doi:10.4310/jdg/1214442276. 1988
- Pinkall, U.; Sterling, I. (1989). "On the Classification of Constant Mean Curvature Tori". The Annals of Mathematics 130 (2): 407. doi:10.2307/1971425.
- Burstall, F. E.; Ferus, D.; Pedit, F.; Pinkall, U. (1993). "Harmonic Tori in Symmetric Spaces and Commuting Hamiltonian Systems on Loop Algebras". The Annals of Mathematics 138 (1): 173–212. doi:10.2307/2946637.
- Pinkall, Ulrich; Polthier, Konrad (1993). "Computing Discrete Minimal Surfaces and Their Conjugates". Experimental Mathematics 2: 15–36. doi:10.1080/10586458.1993.10504266. http://projecteuclid.org/euclid.em/1062620735.
- Kulkarni, R. S.; Pinkall, U. (1994). "A canonical metric for Möbius structures and its applications". Mathematische Zeitschrift 216 (1): 89–129. doi:10.1007/BF02572311. https://eudml.org/doc/174640.
- Bobenko, A. I.; Pinkall, U. (1994). "Discrete surfaces with constant negative Gaussian curvature and the Hirota equation". (No. SFB-288-P-127) P00024647. https://cds.cern.ch/record/266344/files/P00024647.
- "Discrete isothermic surfaces". Journal für die Reine und Angewandte Mathematik 1996 (475): 187–208. 1996. doi:10.1515/crll.1996.475.187. https://cds.cern.ch/record/273463.
- Bobenko, Alexander I.; Pinkall, Ulrich (1999). "Discretization of surfaces and integrable systems". in Bobenko, Alexander I.. Discrete integrable geometry and physics. Oxford University Press. pp. 3–58. ISBN 9780198501602. https://books.google.com/books?id=JYnb2LKcGtIC&pg=PA3.
- Ferus, D.; Leschke, K.; Pedit, F.; Pinkall, U. (2001). "Quaternionic holomorphic geometry: Plücker formula, Dirac eigenvalue estimates and energy estimates of harmonic 2-tori". Inventiones Mathematicae 146 (3): 507–593. doi:10.1007/s002220100173. Bibcode: 2001InMat.146..507F. arXiv preprint
- Burstall, Francis E.; Ferus, Dirk; Leschke, Katrin; Pedit, Franz; Pinkall, Ulrich (2004-10-20). Conformal Geometry of Surfaces in [math]\displaystyle{ S^4 }[/math] and Quaternions. Springer. ISBN 9783540453017. https://books.google.com/books?id=Kmx6CwAAQBAJ.
- Springborn, Boris; Schröder, Peter; Pinkall, Ulrich (2008). "Conformal equivalence of triangle meshes". ACM Transactions on Graphics 27 (3): 1. doi:10.1145/1360612.1360676.
- Chao, Isaac; Pinkall, Ulrich; Sanan, Patrick; Schröder, Peter (2010). "A simple geometric model for elastic deformations". ACM Transactions on Graphics 29 (4): 1. doi:10.1145/1778765.1778775. https://authors.library.caltech.edu/69787/3/038.zip.
References
- ↑ 1.0 1.1 "Ulrich Pinkall". http://page.math.tu-berlin.de/~pinkall/.
- ↑ Pinkall, U. (1985). "Dupin hypersurfaces". Mathematische Annalen 270 (3): 427–440. doi:10.1007/BF01473438. ISSN 0025-5831.
- ↑ Ulrich Pinkall at the Mathematics Genealogy Project
- ↑ Pedit, Franz; Pinkall, Ulrich (1998). "Quaternionic analysis on Riemann surfaces and differential geometry". Doc. Math. (Bielefeld) Extra Vol. ICM Berlin, 1998, vol. II. pp. 389–400. https://www.elibm.org/ft/10011716000.
- ↑ Goldman, William M. (1990). "Book Review: Conformal geometry". Bulletin of the American Mathematical Society 23 (2): 566–576. doi:10.1090/S0273-0979-1990-15984-1. ISSN 0273-0979.
External links
- {{Google Scholar id}} template missing ID and not present in Wikidata.
Original source: https://en.wikipedia.org/wiki/Ulrich Pinkall.
Read more |