Biology:Archosauriformes

From HandWiki
Short description: Clade of reptiles

Archosauriforms
Temporal range: Latest PermianPresent, 252–0 Ma
Archosauriformes.jpg
Row 1 (basal archosauriforms): Erythrosuchus africanus, Euparkeria capensis;

Row 2 (Pseudosuchia): Crocodylus mindorensis, Typothorax coccinarum;
Row 3 (Avemetatarsalia): Casuarius casuarius, Anhanguera piscator.

Scientific classification e
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Reptilia
Clade: Archosauromorpha
Clade: Crocopoda
Clade: Archosauriformes
Gauthier, 1986
Subgroups[2]

Archosauriformes (Greek for 'ruling lizards', and Latin for 'form') is a clade of diapsid reptiles encompassing archosaurs and some of their close relatives. It was defined by Jacques Gauthier (1994) as the clade stemming from the last common ancestor of Proterosuchidae and Archosauria.[3] Phil Senter (2005) defined it as the most exclusive clade containing Proterosuchus and Archosauria.[4] Archosauriforms are a branch of archosauromorphs which originated in the Late Permian (roughly 252 million years ago) and persist to the present day as the two surviving archosaur groups: crocodilians and birds.

Archosauriforms present several traits historically ascribed to the group Archosauria. These include serrated teeth set in deep sockets, a more active metabolism, and an antorbital fenestra (a hole in the skull in front of the eyes). Reptiles with these traits have also been termed "thecodonts" in older methods of classification. Thecodontia is a paraphyletic group, and its usage as a taxonomic category has been rejected under modern cladistic systems. The name Archosauriformes is intended as a monophyletic replacement compatible with modern taxonomy.

Evolutionary history

Early archosauriforms, informally termed "proterosuchians", were superficially crocodile-like animals with sprawling gaits, carnivorous habits, and long hooked snouts. Unlike the bulk of their therapsid contemporaries, archosauriforms survived the catastrophic end-Permian mass extinction. The Late Permian proterosuchid Archosaurus is similar in appearance to its Early Triassic relative, Proterosuchus. Within a few million years after the beginning of the Triassic, the archosauriformes had diversified past the "proterosuchian" grade. The next major archosauriform group was Erythrosuchidae, a family of apex predators with massive heads, the largest carnivorous reptiles up to that time.

In 2016, Martin Ezcurra provided the name Eucrocopoda for the clade including all archosauriforms more crownward (closer to archosaurs) than erythrosuchids. The name translates to "true crocodile feet", in reference to the possession of a crocodilian-style crurotarsal ankle.[2] Eucrocopodans include the families Euparkeriidae (small, agile reptiles),Proterochampsidae (narrow-snouted predators endemic to South America), and Doswelliidae (heavily armored Laurasian reptiles similar to proterochampsids), as well as various other strange reptiles such as Vancleavea and Asperoris.

The most successful archosauriforms, and the only members to survive into the Jurassic, were the archosaurs. Archosauria includes crocodilians, birds, and all descendants of their common ancestor. Extinct archosaurs include aetosaurs, rauisuchids (both members of the crocodilian branch), pterosaurs, and non-avian dinosaurs (both members of the avian branch).[5]

Metabolism

Vascular density and osteocyte density, shape and area have been used to estimate the bone growth rate of archosaurs, leading to the conclusion that this rate had a tendency to grow in ornithodirans and decrease in pseudosuchians.[6] The same method also supports the existence of high resting metabolical rates similar to those of living endotherms (mammals and birds) in the Prolacerta-Archosauriformes clade that were retained by most subgroups, though decreased in Proterosuchus, Phytosauria and Crocodilia.[7] Erythrosuchids and Euparkeria are basal archosauriforms showing signs of high growth rates and elevated metabolism, with Erythrosuchus possessing a rate similar of the fastest-growing dinosaurs. Sexual maturity in those Triassic taxa was probably reached quickly, providing advantage in a habitat with unpredictable variation from heavy rainfall to drought and high mortality. Vancleavea and Euparkeria, which show slower growth rates compared to Erythrosuchus, lived after the climatic stabilization. Early crown archosaurs possessed increased growth rates, which were retained by ornithodirans.[8] Ornithosuchians and poposaurs are stem-crocodilians that show high growth rates similar to those of basal archosauriforms.[9]

Developmental, physiological, anatomical and palaeontological lines of evidence indicate that crocodilians evolved from endothermic ancestors. Living crocodilians are ambush predators adapted to a semi-aquatic lifestyle that benefits from ectothermy due to the lower oxygen intake that allows longer diving time. The mixing of oxygenated and deoxygenated blood in their circulatory system is apparently an innovation that benefits ectothermic life. Earlier archosaurs likely lacked those adaptations and instead had completely separated blood as birds and mammals do.[10][11] A similar process occurred in phytosaurs, which were also semi-aquatic.[12]

The similarities between pterosaur, ornithischian and coelurosaurian integument suggest a common origin of thermal insulation (feathers) in ornithodirans at least 250 million years ago.[13][14] Erythrosuchids living in high latitudes might have benefited from some sort of insulation.[12] If Longisquama was an archosauromorph, it could be associated with the origin of feathers.[15][12]

Relationships

Below is a cladogram from Nesbitt (2011):[16]

Archosauriformes 
 Proterosuchidae 

Archosaurus

ProterosuchusProterosuchusDB flipped.jpg

ErythrosuchusErythrosuchus africanus.jpg

VancleaveaVancleavea white background.jpg

 Proterochampsia 

Tropidosuchus

ChanaresuchusChanaresuchus.jpg

EuparkeriaEuparkeria white background.png

 Crurotarsi 
 Phytosauria* 

Parasuchus

SmilosuchusSmilosuchus adamanensis flipped.jpg

Pseudopalatus

 Archosauria 

PseudosuchiaDeinosuchus riograndensis.png

AvemetatarsaliaMeyers grosses Konversations-Lexikon - ein Nachschlagewerk des allgemeinen Wissens (1908) (Antwerpener Breiftaube).jpg

*Note: Phytosaurs were previously placed within Pseudosuchia, or crocodile-line archosaurs.

Below is a cladogram from Sengupta et al. (2017),[17] based on an updated version of Ezcurra (2016)[2] that reexamined all historical members of the "Proterosuchia" (a polyphyletic historical group including proterosuchids and erythrosuchids). The placement of fragmentary taxa that had to be removed to increase tree resolution are indicated by dashed lines (in the most derived position that they can be confidently assigned to). Taxa that are nomina dubia are indicated by the note "dubium". Bold terminal taxa are collapsed.[2]

 Crocopoda 

AllokotosauriaTrilophosaurus buettneri (flipped).jpg

RhynchosauriaHyperodapedon BW2 white background.jpg

Boreopricea funerea

Prolacertidae Prolacerta broomi.jpg

SAM-PK-591

"Ankistrodon indicus" (dubium)

"Blomosuchus georgii" (dubium)

Tasmaniosaurus triassicus

 Archosauriformes 

Chasmatosuchus magnus

Chasmatosuchus rossicus

Gamosaurus lozovskii

Chasmatosuchus vjushkovi

Vonhuenia friedrichi

ProterosuchidaeProterosuchusDB flipped.jpg

Eorasaurus olsoni

Kalisuchus rewanensis

Fugusuchus hejiapanensis

Sarmatosuchus otschevi

Cuyosuchus huenei

ErythrosuchidaeErythrosuchus africanus.jpg

 Eucrocopoda 

Asperoris mnyama

Dorosuchus neoetus

Euparkeria capensisEuparkeria white background.png

 Proterochampsia 

DoswelliidaeDoswellia kaltenbachi life restoration.png

ProterochampsidaePseudochampsa life restoration white background.jpg

 Archosauria 
 Pseudosuchia 

PhytosauriaSmilosuchus adamanensis flipped.jpg

The rest of PseudosuchiaDeinosuchus riograndensis.png

 Avemetatarsalia 

AphanosauriaTeleocrater v1.png

OrnithodiraMeyers grosses Konversations-Lexikon - ein Nachschlagewerk des allgemeinen Wissens (1908) (Antwerpener Breiftaube).jpg

Sources

References

  1. Sookias, R. B.; Sullivan, C.; Liu, J.; Butler, R. J. (2014). "Systematics of putative euparkeriids (Diapsida: Archosauriformes) from the Triassic of China". PeerJ 2: e658. doi:10.7717/peerj.658. PMID 25469319. 
  2. 2.0 2.1 2.2 2.3 Ezcurra, Martín D. (2016-04-28). "The phylogenetic relationships of basal archosauromorphs, with an emphasis on the systematics of proterosuchian archosauriforms" (in en). PeerJ 4: e1778. doi:10.7717/peerj.1778. ISSN 2167-8359. PMID 27162705. 
  3. Gauthier J. A. (1994): The diversification of the amniotes. In: D. R. Prothero and R. M. Schoch (ed.) Major Features of Vertebrate Evolution: 129-159. Knoxville, Tennessee: The Paleontological Society.
  4. Phil Senter (2005). "Phylogenetic taxonomy and the names of the major archosaurian (Reptilia) clades". PaleoBios 25 (2): 1–7. 
  5. Anatomy, Phylogeny and Palaeobiology of Early Archosaurs and Their Kin
  6. Cubo, Jorge; Roy, Nathalie Le; Martinez-Maza, Cayetana; Montes, Laetitia (2012). "Paleohistological estimation of bone growth rate in extinct archosaurs" (in en). Paleobiology 38 (2): 335–349. doi:10.1666/08093.1. ISSN 0094-8373. Bibcode2012Pbio...38..335C. https://www.cambridge.org/core/journals/paleobiology/article/paleohistological-estimation-of-bone-growth-rate-in-extinct-archosaurs/2F2B5C2B38EF97772E1D6D7ED3443553. 
  7. Legendre, Lucas J.; Guénard, Guillaume; Botha-Brink, Jennifer; Cubo, Jorge (2016-11-01). "Palaeohistological evidence for ancestral high metabolic rate in archosaurs" (in en). Systematic Biology 65 (6): 989–996. doi:10.1093/sysbio/syw033. ISSN 1063-5157. PMID 27073251. https://academic.oup.com/sysbio/article/65/6/989/2281633. 
  8. Botha-Brink, Jennifer; Smith, Roger M. H. (2011-11-01). "Osteohistology of the Triassic archosauromorphs Prolacerta, Proterosuchus, Euparkeria, and Erythrosuchus from the Karoo Basin of South Africa". Journal of Vertebrate Paleontology 31 (6): 1238–1254. doi:10.1080/02724634.2011.621797. ISSN 0272-4634. Bibcode2011JVPal..31.1238B. 
  9. de Ricqlès, Armand; Padian, Kevin; Knoll, Fabien; Horner, John R. (2008-04-01). "On the origin of high growth rates in archosaurs and their ancient relatives: Complementary histological studies on Triassic archosauriforms and the problem of a "phylogenetic signal" in bone histology" (in en). Annales de Paléontologie 94 (2): 57–76. doi:10.1016/j.annpal.2008.03.002. ISSN 0753-3969. Bibcode2008AnPal..94...57D. http://www.sciencedirect.com/science/article/pii/S0753396908000207. 
  10. Seymour, Roger S.; Bennett-Stamper, Christina L.; Johnston, Sonya D.; Carrier, David R.; Grigg, Gordon C. (2004-11-01). "Evidence for endothermic ancestors of crocodiles at the stem of archosaur evolution". Physiological and Biochemical Zoology 77 (6): 1051–1067. doi:10.1086/422766. ISSN 1522-2152. PMID 15674775. https://espace.library.uq.edu.au/view/UQ:71147/UQ71147_OA.pdf. 
  11. Summers, Adam P. (April 2005). "Warm-hearted crocs" (in en). Nature 434 (7035): 833–834. doi:10.1038/434833a. ISSN 1476-4687. PMID 15829945. Bibcode2005Natur.434..833S. 
  12. 12.0 12.1 12.2 "Dinosaur Renaissance" (in en). April 1975. https://www.scientificamerican.com/article/dinosaur-renaissance/. 
  13. Yang, Zixiao; Jiang, Baoyu; McNamara, Maria E.; Kearns, Stuart L.; Pittman, Michael; Kaye, Thomas G.; Orr, Patrick J.; Xu, Xing et al. (January 2019). "Pterosaur integumentary structures with complex feather-like branching" (in en). Nature Ecology & Evolution 3 (1): 24–30. doi:10.1038/s41559-018-0728-7. ISSN 2397-334X. PMID 30568282. https://www.nature.com/articles/s41559-018-0728-7. 
  14. Benton, Michael J.; Dhouailly, Danielle; Jiang, Baoyu; McNamara, Maria (2019-09-01). "The early origin of feathers" (in en). Trends in Ecology & Evolution 34 (9): 856–869. doi:10.1016/j.tree.2019.04.018. ISSN 0169-5347. PMID 31164250. http://www.sciencedirect.com/science/article/pii/S0169534719301405. 
  15. Buchwitz, Michael; Voigt, Sebastian (2012-09-01). "The dorsal appendages of the Triassic reptile Longisquama insignis: reconsideration of a controversial integument type" (in en). Paläontologische Zeitschrift 86 (3): 313–331. doi:10.1007/s12542-012-0135-3. ISSN 1867-6812. Bibcode2012PalZ...86..313B. 
  16. Nesbitt, S.J. (2011). "The early evolution of archosaurs: relationships and the origin of major clades". Bulletin of the American Museum of Natural History 352: 1–292. doi:10.1206/352.1. https://digitallibrary.amnh.org/handle/2246/6112. 
  17. Sengupta, S.; Ezcurra, M.D.; Bandyopadhyay, S. (2017). "A new horned and long-necked herbivorous stem-archosaur from the Middle Triassic of India". Scientific Reports 7 (1): 8366. doi:10.1038/s41598-017-08658-8. PMID 28827583. Bibcode2017NatSR...7.8366S. 

External links

Wikidata ☰ Q282487 entry